最大heap

1 什么是最大heap

最大heap是一棵完全二叉树。每棵子树的根比它的两棵子树上的节点都要大。

2 建堆的过程

function max_heaptify(A):

    for (i = n/2向下取整;i > 0; i--):

        max_heaptify_one(A, i)

function max_heaptify_one(A, i):

    [largerSon, largerSonIndex] = larger(A, i);

    if largerSon < A[i]:

        return

    else:

        tmp = A[i]

        A[i] = A[largerSonIndex]

        A[largerSonIndex] = tmp

        max_heaptify_one(A, largerSonIndex)

3 建堆的时间复杂度

o(n),线性的。

 假设要建的堆是一个满二叉树。从倒数第二层的最后一个结点往前都要进行以该结点为root的堆化,最坏情况下,每次堆化都要一直换到最底层的叶子结点处。

倒数第二层的结点有2^(h-1)个,每个需要进行1次比较,故共要进行(2^(h-1)*1)次比较;

倒数第三层的结点有2^(h-2)个,每个需要进行2次比较,故共要进行(2^(h-2)*2)次比较;

..................

第一层有1个结点,需要进行h-1次比较,故共要进行(1*(h-1))次比较;

加起来

N =  (2^(h-1)*1) + (2^(h-2)*2) + ... + 1*(h-1) = (2-(2 + h)/(2^h)) * n

(2-(2 + h)/(2^h)) < 2

故O(n) = n,因此建堆的时间复杂度是线形的。

算法分析的过程本质上分析的是该算法的上界,因此在计算不等式的时候,该放的时候就要放。

4 堆排序

Max_Heaptify(A)

for i = 0; i < n; i ++:

    B[i] = A[1]

    A[1] = A[n - i]

    Max_Heaptify_one(A, 1)

5 节点数为n的完全二叉树的非叶子节点个数为 n/2向下取整,叶子节点的个数为n/2向上取整

5.1 n向上取整等式

(n + r)整个的向上取整 = n向上取整 + r,这里r是整数

这个可以根据定义来证明,并且定义的区间里面只有一个整数,所以是等价的。只要是在这个区间里面的所有的整数都是同一个,都是相等的。

5.2 非叶子节点的个数求法如下

假如整棵树共有h层,非叶子节点分为两个部分:

第一,前h-2层的所有节点,总共2^(h-2) - 1

第二,第h-1层的部分节点,等于最后一层的所有的叶子结点的个数/2取上限,因为每个非叶子节点至少有一个儿子,所以是取上限。

最后一层的叶子节点数等于n - 2^(h-1) + 1,所以这一层的非叶子结点数为(n - 2^(h-1) + 1)/2向上取整。

这样非叶子结点总数为

2^(h-2) - 1 + (n - 2^(h-1) + 1)/2向上取整 = (n/2 - 1/2)向上取整 = n/2向下取整。

因此也叶子结点总数为n/2向上取整,这样总共有n个结点。

6 注意事项

6.1 实现堆时是从数组的下标为1开始的,不是从0开始的

A[0]是丢弃的,从A[1]开始。在比较根和两个儿子的大小的时候,是i和2i、2i+1进行比较的。

原文地址:https://www.cnblogs.com/hustdc/p/7593205.html