OpenCV

/*!
* file Capture.cpp
*
* author ranjiewen
* date 十一月 2016
*
*  http://www.cnblogs.com/tanfy/p/5552270.html

解析opencv自带人脸识别源码(……/opencv-3.1.0/samples/cpp/facedetect.cpp)
*/
#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>

using namespace std;
using namespace cv;

static void help()
{
	cout << "
This program demonstrates the cascade recognizer. Now you can use Haar or LBP features.
"
		"This classifier can recognize many kinds of rigid objects, once the appropriate classifier is trained.
"
		"It's most known use is for faces.
"
		"Usage:
"
		"./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]
"
		"   [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]
"
		"   [--scale=<image scale greater or equal to 1, try 1.3 for example>]
"
		"   [--try-flip]
"
		"   [filename|camera_index]

"
		"see facedetect.cmd for one call:
"
		"./facedetect --cascade="../../data/haarcascades/haarcascade_frontalface_alt.xml" --nested-cascade="../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml" --scale=1.3

"
		"During execution:
	Hit any key to quit.
"
		"	Using OpenCV version " << CV_VERSION << "
" << endl;
}

void detectAndDraw(Mat& img, CascadeClassifier& cascade,
	CascadeClassifier& nestedCascade,
	double scale, bool tryflip);

string cascadeName;
string nestedCascadeName;



int main(int argc, const char** argv)
{
	VideoCapture capture;
	Mat frame, image;
	string inputName;
	bool tryflip;

	// CascadeClassifier是Opencv中做人脸检测的时候的一个级联分类器,现在有两种选择:一是使用老版本的CvHaarClassifierCascade函数,一是使用新版本的CascadeClassifier类。老版本的分类器只支持类Haar特征,而新版本的分类器既可以使用Haar,也可以使用LBP特征。
	CascadeClassifier cascade, nestedCascade;
	double scale;

	cv::CommandLineParser parser(argc, argv,
		"{help h||}"
		"{cascade|D:/opencv/sources/data/haarcascades/haarcascade_frontalface_alt.xml|}"   //默认路径实在安装路径下sample,修改了路径,以便加载load成功
		"{nested-cascade|D:/opencv/sources/data/haarcascades/haarcascade_eye_tree_eyeglasses.xml|}"  //修改路径
		"{scale|1|}{try-flip||}{@filename||}" //文件为空时,设置摄像头,实时检测人脸
		);
	if (parser.has("help"))
	{
		help();
		return 0;
	}

	cascadeName = parser.get<string>("cascade");
	nestedCascadeName = parser.get<string>("nested-cascade");
	scale = parser.get<double>("scale");
	if (scale < 1)
		scale = 1;
	tryflip = parser.has("try-flip");
	inputName = parser.get<string>("@filename");
	std::cout << inputName << std::endl;  // test
	if (!parser.check())
	{
		parser.printErrors();
		return 0;
	}

	// 加载模型
	if (!nestedCascade.load(nestedCascadeName))
		cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
	if (!cascade.load(cascadeName))
	{
		cerr << "ERROR: Could not load classifier cascade" << endl;
		help();
		return -1;
	}
	// 读取摄像头
	// isdigit检测字符是否为阿拉伯数字 
	if (inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1))
	{
		int c = inputName.empty() ? 0 : inputName[0] - '0';
		// 此处若系统在虚拟机上,需在虚拟机中设置接管摄像头:虚拟机(M)-> 可移动设备 -> 摄像头名称 -> 连接(断开与主机连接)
		if (!capture.open(c))
			cout << "Capture from camera #" << c << " didn't work" << endl;
		else {
			capture.set(CV_CAP_PROP_FRAME_WIDTH, 640);
			capture.set(CV_CAP_PROP_FRAME_HEIGHT, 480);
		}
	}
	else if (inputName.size())
	{
		image = imread(inputName, 1);
		if (image.empty())
		{
			if (!capture.open(inputName))
				cout << "Could not read " << inputName << endl;
		}
	}
	else
	{
		image = imread("../data/lena.jpg", 1);
		if (image.empty()) cout << "Couldn't read ../data/lena.jpg" << endl;
	}

	if (capture.isOpened())
	{
		cout << "Video capturing has been started ..." << endl;


		for (;;)
		{
			std::cout << "capturing..." << std::endl;  // test
			capture >> frame;
			if (frame.empty())
				break;

			Mat frame1 = frame.clone();
			std::cout << "Start to detect..." << std::endl;  // test
			detectAndDraw(frame1, cascade, nestedCascade, scale, tryflip);

			int c = waitKey(10);
			if (c == 27 || c == 'q' || c == 'Q')
				break;
		}
	}
	else
	{
		cout << "Detecting face(s) in " << inputName << endl;
		if (!image.empty())
		{
			detectAndDraw(image, cascade, nestedCascade, scale, tryflip);
			waitKey(0);
		}
		else if (!inputName.empty())
		{
			/* assume it is a text file containing the
			list of the image filenames to be processed - one per line */
			FILE* f = fopen(inputName.c_str(), "rt");
			if (f)
			{
				char buf[1000 + 1];
				while (fgets(buf, 1000, f))
				{
					int len = (int)strlen(buf), c;
					while (len > 0 && isspace(buf[len - 1]))
						len--;
					buf[len] = '';
					cout << "file " << buf << endl;
					image = imread(buf, 1);
					if (!image.empty())
					{
						detectAndDraw(image, cascade, nestedCascade, scale, tryflip);
						c = waitKey(0);
						if (c == 27 || c == 'q' || c == 'Q')
							break;
					}
					else
					{
						cerr << "Aw snap, couldn't read image " << buf << endl;
					}
				}
				fclose(f);
			}
		}
	}

	return 0;
}

void detectAndDraw(Mat& img, CascadeClassifier& cascade,
	CascadeClassifier& nestedCascade,
	double scale, bool tryflip)
{
	double t = 0;
	vector<Rect> faces, faces2;
	const static Scalar colors[] =
	{
		Scalar(255, 0, 0),
		Scalar(255, 128, 0),
		Scalar(255, 255, 0),
		Scalar(0, 255, 0),
		Scalar(0, 128, 255),
		Scalar(0, 255, 255),
		Scalar(0, 0, 255),
		Scalar(255, 0, 255)
	};
	Mat gray, smallImg;

	cvtColor(img, gray, COLOR_BGR2GRAY);
	double fx = 1 / scale;
	resize(gray, smallImg, Size(), fx, fx, INTER_LINEAR);
	equalizeHist(smallImg, smallImg);

	t = (double)cvGetTickCount();
	cascade.detectMultiScale(smallImg, faces,
		1.1, 2, 0
		//|CASCADE_FIND_BIGGEST_OBJECT
		//|CASCADE_DO_ROUGH_SEARCH
		| CASCADE_SCALE_IMAGE,
		Size(30, 30));
	if (tryflip)
	{
		flip(smallImg, smallImg, 1);
		cascade.detectMultiScale(smallImg, faces2,
			1.1, 2, 0
			//|CASCADE_FIND_BIGGEST_OBJECT
			//|CASCADE_DO_ROUGH_SEARCH
			| CASCADE_SCALE_IMAGE,
			Size(30, 30));
		for (vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++)
		{
			faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
		}
	}
	t = (double)cvGetTickCount() - t;
	printf("detection time = %g ms
", t / ((double)cvGetTickFrequency()*1000.));
	for (size_t i = 0; i < faces.size(); i++)
	{
		Rect r = faces[i];
		Mat smallImgROI;
		vector<Rect> nestedObjects;
		Point center;
		Scalar color = colors[i % 8];
		int radius;

		double aspect_ratio = (double)r.width / r.height;
		if (0.75 < aspect_ratio && aspect_ratio < 1.3)
		{
			center.x = cvRound((r.x + r.width*0.5)*scale);
			center.y = cvRound((r.y + r.height*0.5)*scale);
			radius = cvRound((r.width + r.height)*0.25*scale);
			circle(img, center, radius, color, 3, 8, 0);
		}
		else
			rectangle(img, cvPoint(cvRound(r.x*scale), cvRound(r.y*scale)),
				cvPoint(cvRound((r.x + r.width - 1)*scale), cvRound((r.y + r.height - 1)*scale)),
				color, 3, 8, 0);
		if (nestedCascade.empty())
			continue;
		smallImgROI = smallImg(r);
		nestedCascade.detectMultiScale(smallImgROI, nestedObjects,
			1.1, 2, 0
			//|CASCADE_FIND_BIGGEST_OBJECT
			//|CASCADE_DO_ROUGH_SEARCH
			//|CASCADE_DO_CANNY_PRUNING
			| CASCADE_SCALE_IMAGE,
			Size(30, 30));
		for (size_t j = 0; j < nestedObjects.size(); j++)
		{
			Rect nr = nestedObjects[j];
			center.x = cvRound((r.x + nr.x + nr.width*0.5)*scale);
			center.y = cvRound((r.y + nr.y + nr.height*0.5)*scale);
			radius = cvRound((nr.width + nr.height)*0.25*scale);
			circle(img, center, radius, color, 3, 8, 0);
		}
	}
	imshow("result", img);
}




/*****************************************************
* file Capture.cpp
* date 2016/11/10 0:22
* author ranjiewen
* contact: ranjiewen@outlook.com
* 问题描述:
http://www.cnblogs.com/lingshaohu/archive/2011/12/16/2290017.html

* 问题分析:
可以存avi,但是不能打开,待改善
*****************************************************/

//#include <iostream>
//#include <opencv2/opencv.hpp>
//using namespace cv;;
//using namespace std;
//int main()
//{
//    CvCapture* capture = cvCaptureFromCAM(-1);
//    CvVideoWriter* video = NULL;
//    IplImage* frame = NULL;
//    int n;
//    if (!capture) //如果不能打开摄像头给出警告
//    {
//        cout << "Can not open the camera." << endl;
//        return -1;
//    }
//    else
//    {
//        frame = cvQueryFrame(capture); //首先取得摄像头中的一帧
//        video = cvCreateVideoWriter("camera.avi", CV_FOURCC('X', 'V', 'I', 'D'), 25,
//            cvSize(frame->width, frame->height)); //创建CvVideoWriter对象并分配空间
//        //保存的文件名为camera.avi,编码要在运行程序时选择,大小就是摄像头视频的大小,帧频率是32
//        if (video) //如果能创建CvVideoWriter对象则表明成功
//        {
//            cout << "VideoWriter has created." << endl;
//        }
//
//        cvNamedWindow("Camera Video", 1); //新建一个窗口
//        int i = 0;
//        while (i <= 300) // 让它循环200次自动停止录取
//        {
//            frame = cvQueryFrame(capture); //从CvCapture中获得一帧
//            if (!frame)
//            {
//                cout << "Can not get frame from the capture." << endl;
//                break;
//            }
//            n = cvWriteFrame(video, frame); //判断是否写入成功,如果返回的是1,表示写入成功
//            cout << n << endl;
//            cvShowImage("Camera Video", frame); //显示视频内容的图片
//            i++;
//            if (cvWaitKey(2) > 0)
//                break; //有其他键盘响应,则退出
//        }
//
//        cvReleaseVideoWriter(&video);
//        cvReleaseCapture(&capture);
//        cvDestroyWindow("Camera Video");
//    }
//    return 0;
//}

原文地址:https://www.cnblogs.com/hugeng007/p/9311027.html