python实现简单动画——生命游戏

生命游戏

       生命游戏的宇宙是一个无限的,其中细胞的二维正交网格,每个细胞处于两种可能的状态之一,即*活着*或*死亡*(分别是*人口稠密*和*无人居住*)。每个细胞与它的八个邻居相互作用,这八个邻居是水平,垂直或对角相邻的细胞。在每一步中,都会发生以下转换:

  1.  任何有两个以上活着的邻居的活细胞都会死亡,好像是在人口下一样。
  2. 任何有两三个活着的邻居的活细胞都会生活在下一代。
  3. 任何有三个以上活着的邻居的活细胞都会死亡,就好像人口过剩一样。
  4. 任何具有三个活的邻居的死细胞都会变成一个活细胞,就像是通过繁殖一样。

其简单动画效果如:

其主要实现逻辑代码出自Effective Python一书中。不过原代码中的生命游戏是静止的,把每一代分别打印出来,没有动画效果,我增加部分代码,实现在终端的动画效果。
动画实现原理是:

x1b[nA]   光标上移
x1b[nB]   光标下移
x1b[nC]   光标右移
x1b[nD]   光标左移
(n为字符数)

控制光标位置是通过ANSI转义符实现的。从这篇文章获得相关知识的:https://www.zhihu.com/question/21100416/answer/208143599

  第一代细胞(预设生存环境在 X * Y 的二维平面方格上)随机生成,将其打印在控制台上,然后此时控制台光标会从初始位置(方格左上角(1,1)上)到方格右下角(X,Y)的位置。下一代细胞打印前通过移动控制台的光标到初始位置(1,1)上,此后的打印这代细胞就会覆盖前一代细胞。造成视觉上的动画效果。

全部代码如下:

  1 import os
  2 import sys
  3 import time
  4 import random
  5 from collections import namedtuple
  6 
  7 
  8 ALIVE = '*'
  9 EMPTY = ' '
 10 
 11 
 12 Query = namedtuple('Query', ('y', 'x'))
 13 
 14 def count_neighbors(y, x):
 15     n_ = yield Query(y + 1, x + 0)  # North
 16     ne = yield Query(y + 1, x + 1)  # Northeast
 17     e_ = yield Query(y + 0, x + 1)  # East
 18     se = yield Query(y - 1, x + 1)  # Southeast
 19     s_ = yield Query(y - 1, x + 0)  # South
 20     sw = yield Query(y - 1, x - 1)  # Southwest
 21     w_ = yield Query(y + 0, x - 1)  # West
 22     nw = yield Query(y + 1, x - 1)  # Northwest
 23     neighbor_states = [n_, ne, e_, se, s_, sw, w_, nw]
 24     count = 0
 25     for state in neighbor_states:
 26         if state == ALIVE:
 27             count += 1
 28     return count
 29 
 30 Transition = namedtuple('Transition', ('y', 'x', 'state'))
 31 
 32 def step_cell(y, x):
 33     state = yield Query(y, x)
 34     neighbors = yield from count_neighbors(y, x)
 35     next_state = game_logic(state, neighbors)
 36     yield Transition(y, x, next_state)
 37 
 38 
 39 def game_logic(state, neighbors):
 40     if state == ALIVE:
 41         if neighbors < 2:
 42             return EMPTY     # Die: Too few
 43         elif neighbors > 3:
 44             return EMPTY     # Die: Too many
 45     else:
 46         if neighbors == 3:
 47             return ALIVE     # Regenerate
 48     return state
 49 
 50 
 51 TICK = object()
 52 
 53 def simulate(height, width):
 54     while True:
 55         for y in range(height):
 56             for x in range(width):
 57                 yield from step_cell(y, x)
 58         yield TICK
 59 
 60 
 61 class Grid(object):
 62     def __init__(self, height, width):
 63         self.height = height
 64         self.width = width
 65         self.rows = []
 66         for _ in range(self.height):
 67             self.rows.append([EMPTY] * self.width)
 68 
 69     def query(self, y, x):
 70         return self.rows[y % self.height][x % self.width]
 71 
 72     def assign(self, y, x, state):
 73         self.rows[y % self.height][x % self.width] = state
 74 
 75     def random_alive(self, live_count):
 76         xy = [(i,j) for i in range(self.width) for j in range(self.height)]
 77         for i,j in random.sample(xy, live_count):
 78             self.assign(i, j, ALIVE)
 79 
 80     def live_a_generation(self,grid, sim):
 81         # self.change_state(EMPTY)
 82         progeny = Grid(grid.height, grid.width)
 83         item = next(sim)
 84         while item is not TICK:
 85             if isinstance(item, Query):
 86                 state = grid.query(item.y, item.x)
 87                 item = sim.send(state)
 88             else:  # Must be a Transition
 89                 progeny.assign(item.y, item.x, item.state)
 90                 item = next(sim)
 91         return progeny
 92 
 93     def __str__(self):
 94         output = ''
 95         for row in self.rows:
 96             for cell in row:
 97                 output += cell
 98             output += '
'
 99         return output.strip()      
100 
101 
102 def main(x,y,k):
103     os.system('cls') # linux 为 clear
104     grid = Grid(x, y)
105     grid.random_alive(k)
106     clear = 'x1b[{}Ax1b[{}D'.format(x,y)
107     print(grid, end='')
108     sim = simulate(grid.height, grid.width)
109     while 1:
110         time.sleep(.1)
111         grid = grid.live_a_generation(grid, sim)
112         print(clear)
113         print(grid, end='')
114         time.sleep(.1)
115         print(clear)
116 
117 if __name__ == '__main__':
118     main(30,40,205)
原文地址:https://www.cnblogs.com/huanping/p/9890668.html