Java ConcurrentHashMap

 通过分析Hashtable就知道,synchronized是针对整张Hash表的,即每次锁住整张表让线程独占,

ConcurrentHashMap允许多个修改操作并发进行,其关键在于使用了锁分离技术。它使用了多个锁来控制对hash表的不同部分进行的修改。

ConcurrentHashMap内部使用段(Segment)来表示这些不同的部分,每个段其实就是一个小的hash table,它们有自己的锁。只要多个修改操作发生在不同的段上,它们就可以并发进行。
有些方法需要跨段,比如size()和containsValue(),它们可能需要锁定整个表而而不仅仅是某个段,这需要按顺序锁定所有段,操作完毕后,又按顺序释放所有段的锁。这里“按顺序”是很重要的,否则极有可能出现死锁,

在ConcurrentHashMap内部,段数组是final的,并且其成员变量实际上也是final的,但是,仅仅是将数组声明为final的并不保证数组成员也是final的,这需要实现上的保证。这可以确保不会出现死锁,因为获得锁的顺序是固定的。

ConcurrentHashMap和Hashtable主要区别就是围绕着锁的粒度以及如何锁,可以简单理解成把一个大的HashTable分解成多个,形成了锁分离。

 ConcurrentHashMap中主要实体类就是三个:ConcurrentHashMap(整个Hash表),Segment(桶),HashEntry(节点)

 

ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。

Segment是一种可重入锁ReentrantLock,在ConcurrentHashMap里扮演锁的角色,HashEntry则用于存储键值对数据。

一个ConcurrentHashMap里包含一个Segment数组,Segment的结构和HashMap类似,是一种数组和链表结构,

一个Segment里包含一个HashEntry数组,每个HashEntry是一个链表结构的元素,

每个Segment守护者一个HashEntry数组里的元素,当对HashEntry数组的数据进行修改时,必须首先获得它对应的Segment锁。

Get方法:
1.为输入的Key做Hash运算,得到hash值。
2.通过hash值,定位到对应的Segment对象
3.再次通过hash值,定位到Segment当中数组的具体位置。
Put方法:
1.为输入的Key做Hash运算,得到hash值。
2.通过hash值,定位到对应的Segment对象
3.获取可重入锁
4.再次通过hash值,定位到Segment当中数组的具体位置。
5.插入或覆盖HashEntry对象。
6.释放锁。


ConcurrentHashMap的Size方法是一个嵌套循环,大体逻辑如下:
1.遍历所有的Segment。
2.把Segment的元素数量累加起来。
3.把Segment的修改次数累加起来。
4.计算多次Size,判断所有Segment的总修改次数是否大于上一次的总修改次数。如果大于,说明统计过程中有修改,重新统计,尝试次数+1;如果不是。说明没有修改,统计结束。
5.如果尝试次数超过阈值,则对每一个Segment加锁,再重新统计。
6.再次判断所有Segment的总修改次数是否大于上一次的总修改次数。由于已经加锁,次数一定和上次相等。
7.释放锁,统计结束。

为了尽量不锁住所有Segment,首先乐观地假设Size过程中不会有修改。当尝试一定次数,才无奈转为悲观锁,锁住所有Segment保证强一致性。

 JDK1.7版本:

 public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        int sshift = 0;
        int ssize = 1;
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1;
        }
        this.segmentShift = 32 - sshift;
        this.segmentMask = ssize - 1;
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)
            cap <<= 1;
        // create segments and segments[0]
        Segment<K,V> s0 =
            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                             (HashEntry<K,V>[])new HashEntry[cap]);
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }

1.concurrencyLevel,含义,并发级别,并发度,在键不冲突的情况下,最多允许多少个线程同时访问数据不需要阻塞(理想情况下),我们应该知道,ConcurrentHashMap的基本实现原理就是引入Segment数据结构,将锁的粒度细化到Segment,也就是说,如果多个线程,同时操作多个key,如果这些key,分布在不同的Segment,那这些线程的操作互不影响,当然不需要加锁,提高性能。所以concurrencyLevel,就是要求告诉ConcurrentHashMap,我需要这么过个线程同时访问你而不产生锁冲突。
2.ssize,该变量的值等于ConcurrentHashMap中segment的长度,也就是 Segment[]的长度。该值取决于concurrencyLevel,其实就是小于concurrencyLevel的最大的2的幂,,比如concurrencyLevel=16,那 ssize=16,
如果 concurrencyLevel=12,ssize=8,因为ssize的长度为2的幂。
3.shift的值,看出来了没,其实就是 ssize 2 ^ shift,其实就是表示ssize需要的二进制位。
4.segmentMask、segmentShift ,这两个属性在该表达式中使用:(h >>> segmentShift) & segmentMask),很明显,就是用来算Segment[]数组中的下标来的。意图segmentShift = 32 - sshift,也就是利用hash的高位与代表(ssize-1)来定位下标。// 如果默认,初始容量16,那么ssize=16, sshift=4 定位端 hash 无符号向右移多少28位,(总共32位),那就是使原本32-29位参与运算(高位)
5.cap,就是每个Segment中HashEntity[]的长度,大于【初始容量/segment长度】的最小2的幂。

分析到这里,ConcurrentHashMap就构建成功了,我们先重点关注一下Segment的数据结构。
Segment段的内部数据结构如下:
1)类的声明:static final class Segment<K,V> extends ReentrantLock implements Serializable
2)数据结构:
transient volatile HashEntry<K,V>[] table; // 内部键值对
transient int count; // 元素数量
transient int modCount; // 结构发生变化的次数
transient int threshold; // 扩容时的阔值
final float loadFactor; // 扩容因子,主要影响threshold,影响什么时候扩容
对上述结构,是否似曾相识,对了,就是它,HashMap;每个Segment其实就是一个HashMap;还有一个很关键点:Segment继承自ReentrantLock,也就是Segment本身就是一把锁。

get方法:

 public V get(Object key) {
        Segment<K,V> s; // manually integrate access methods to reduce overhead
        HashEntry<K,V>[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }

put方法:

    public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
            s = ensureSegment(j);
        return s.put(key, hash, value, false);
    }

containsKey方法:

 public boolean containsKey(Object key) {
        Segment<K,V> s; // same as get() except no need for volatile value read
        HashEntry<K,V>[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return true;
            }
        }
        return false;
    }

containsValue方法:

 public boolean containsValue(Object value) {
        // Same idea as size()
        if (value == null)
            throw new NullPointerException();
        final Segment<K,V>[] segments = this.segments;
        boolean found = false;
        long last = 0;
        int retries = -1;
        try {
            outer: for (;;) {
                if (retries++ == RETRIES_BEFORE_LOCK) {
                    for (int j = 0; j < segments.length; ++j)
                        ensureSegment(j).lock(); // force creation
                }
                long hashSum = 0L;
                int sum = 0;
                for (int j = 0; j < segments.length; ++j) {
                    HashEntry<K,V>[] tab;
                    Segment<K,V> seg = segmentAt(segments, j);
                    if (seg != null && (tab = seg.table) != null) {
                        for (int i = 0 ; i < tab.length; i++) {
                            HashEntry<K,V> e;
                            for (e = entryAt(tab, i); e != null; e = e.next) {
                                V v = e.value;
                                if (v != null && value.equals(v)) {
                                    found = true;
                                    break outer;
                                }
                            }
                        }
                        sum += seg.modCount;
                    }
                }
                if (retries > 0 && sum == last)
                    break;
                last = sum;
            }
        } finally {
            if (retries > RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j)
                    segmentAt(segments, j).unlock();
            }
        }
        return found;
    }

size方法:

   public int size() {
        // Try a few times to get accurate count. On failure due to
        // continuous async changes in table, resort to locking.
        final Segment<K,V>[] segments = this.segments;
        int size;
        boolean overflow; // true if size overflows 32 bits
        long sum;         // sum of modCounts
        long last = 0L;   // previous sum
        int retries = -1; // first iteration isn't retry
        try {
            for (;;) {
                if (retries++ == RETRIES_BEFORE_LOCK) {
                    for (int j = 0; j < segments.length; ++j)
                        ensureSegment(j).lock(); // force creation
                }
                sum = 0L;
                size = 0;
                overflow = false;
                for (int j = 0; j < segments.length; ++j) {
                    Segment<K,V> seg = segmentAt(segments, j);
                    if (seg != null) {
                        sum += seg.modCount;
                        int c = seg.count;
                        if (c < 0 || (size += c) < 0)
                            overflow = true;
                    }
                }
                if (sum == last)
                    break;
                last = sum;
            }
        } finally {
            if (retries > RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j)
                    segmentAt(segments, j).unlock();
            }
        }
        return overflow ? Integer.MAX_VALUE : size;
    }

Segment类:

   static final class Segment<K,V> extends ReentrantLock implements Serializable {
        /*
         * Segments maintain a table of entry lists that are always
         * kept in a consistent state, so can be read (via volatile
         * reads of segments and tables) without locking.  This
         * requires replicating nodes when necessary during table
         * resizing, so the old lists can be traversed by readers
         * still using old version of table.
         *
         * This class defines only mutative methods requiring locking.
         * Except as noted, the methods of this class perform the
         * per-segment versions of ConcurrentHashMap methods.  (Other
         * methods are integrated directly into ConcurrentHashMap
         * methods.) These mutative methods use a form of controlled
         * spinning on contention via methods scanAndLock and
         * scanAndLockForPut. These intersperse tryLocks with
         * traversals to locate nodes.  The main benefit is to absorb
         * cache misses (which are very common for hash tables) while
         * obtaining locks so that traversal is faster once
         * acquired. We do not actually use the found nodes since they
         * must be re-acquired under lock anyway to ensure sequential
         * consistency of updates (and in any case may be undetectably
         * stale), but they will normally be much faster to re-locate.
         * Also, scanAndLockForPut speculatively creates a fresh node
         * to use in put if no node is found.
         */

        private static final long serialVersionUID = 2249069246763182397L;

        /**
         * The maximum number of times to tryLock in a prescan before
         * possibly blocking on acquire in preparation for a locked
         * segment operation. On multiprocessors, using a bounded
         * number of retries maintains cache acquired while locating
         * nodes.
         */
        static final int MAX_SCAN_RETRIES =
            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;

        /**
         * The per-segment table. Elements are accessed via
         * entryAt/setEntryAt providing volatile semantics.
         */
        transient volatile HashEntry<K,V>[] table;

        /**
         * The number of elements. Accessed only either within locks
         * or among other volatile reads that maintain visibility.
         */
        transient int count;

        /**
         * The total number of mutative operations in this segment.
         * Even though this may overflows 32 bits, it provides
         * sufficient accuracy for stability checks in CHM isEmpty()
         * and size() methods.  Accessed only either within locks or
         * among other volatile reads that maintain visibility.
         */
        transient int modCount;

        /**
         * The table is rehashed when its size exceeds this threshold.
         * (The value of this field is always <tt>(int)(capacity *
         * loadFactor)</tt>.)
         */
        transient int threshold;

        /**
         * The load factor for the hash table.  Even though this value
         * is same for all segments, it is replicated to avoid needing
         * links to outer object.
         * @serial
         */
        final float loadFactor;

        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
            this.loadFactor = lf;
            this.threshold = threshold;
            this.table = tab;
        }

        final V put(K key, int hash, V value, boolean onlyIfAbsent) {
            HashEntry<K,V> node = tryLock() ? null :
                scanAndLockForPut(key, hash, value);
            V oldValue;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry<K,V> first = entryAt(tab, index);
                for (HashEntry<K,V> e = first;;) {
                    if (e != null) {
                        K k;
                        if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {
                            oldValue = e.value;
                            if (!onlyIfAbsent) {
                                e.value = value;
                                ++modCount;
                            }
                            break;
                        }
                        e = e.next;
                    }
                    else {
                        if (node != null)
                            node.setNext(first);
                        else
                            node = new HashEntry<K,V>(hash, key, value, first);
                        int c = count + 1;
                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                            rehash(node);
                        else
                            setEntryAt(tab, index, node);
                        ++modCount;
                        count = c;
                        oldValue = null;
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }

        /**
         * Doubles size of table and repacks entries, also adding the
         * given node to new table
         */
        @SuppressWarnings("unchecked")
        private void rehash(HashEntry<K,V> node) {
            /*
             * Reclassify nodes in each list to new table.  Because we
             * are using power-of-two expansion, the elements from
             * each bin must either stay at same index, or move with a
             * power of two offset. We eliminate unnecessary node
             * creation by catching cases where old nodes can be
             * reused because their next fields won't change.
             * Statistically, at the default threshold, only about
             * one-sixth of them need cloning when a table
             * doubles. The nodes they replace will be garbage
             * collectable as soon as they are no longer referenced by
             * any reader thread that may be in the midst of
             * concurrently traversing table. Entry accesses use plain
             * array indexing because they are followed by volatile
             * table write.
             */
            HashEntry<K,V>[] oldTable = table;
            int oldCapacity = oldTable.length;
            int newCapacity = oldCapacity << 1;
            threshold = (int)(newCapacity * loadFactor);
            HashEntry<K,V>[] newTable =
                (HashEntry<K,V>[]) new HashEntry[newCapacity];
            int sizeMask = newCapacity - 1;
            for (int i = 0; i < oldCapacity ; i++) {
                HashEntry<K,V> e = oldTable[i];
                if (e != null) {
                    HashEntry<K,V> next = e.next;
                    int idx = e.hash & sizeMask;
                    if (next == null)   //  Single node on list
                        newTable[idx] = e;
                    else { // Reuse consecutive sequence at same slot
                        HashEntry<K,V> lastRun = e;
                        int lastIdx = idx;
                        for (HashEntry<K,V> last = next;
                             last != null;
                             last = last.next) {
                            int k = last.hash & sizeMask;
                            if (k != lastIdx) {
                                lastIdx = k;
                                lastRun = last;
                            }
                        }
                        newTable[lastIdx] = lastRun;
                        // Clone remaining nodes
                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                            V v = p.value;
                            int h = p.hash;
                            int k = h & sizeMask;
                            HashEntry<K,V> n = newTable[k];
                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                        }
                    }
                }
            }
            int nodeIndex = node.hash & sizeMask; // add the new node
            node.setNext(newTable[nodeIndex]);
            newTable[nodeIndex] = node;
            table = newTable;
        }

        /**
         * Scans for a node containing given key while trying to
         * acquire lock, creating and returning one if not found. Upon
         * return, guarantees that lock is held. UNlike in most
         * methods, calls to method equals are not screened: Since
         * traversal speed doesn't matter, we might as well help warm
         * up the associated code and accesses as well.
         *
         * @return a new node if key not found, else null
         */
        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
            HashEntry<K,V> first = entryForHash(this, hash);
            HashEntry<K,V> e = first;
            HashEntry<K,V> node = null;
            int retries = -1; // negative while locating node
            while (!tryLock()) {
                HashEntry<K,V> f; // to recheck first below
                if (retries < 0) {
                    if (e == null) {
                        if (node == null) // speculatively create node
                            node = new HashEntry<K,V>(hash, key, value, null);
                        retries = 0;
                    }
                    else if (key.equals(e.key))
                        retries = 0;
                    else
                        e = e.next;
                }
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                else if ((retries & 1) == 0 &&
                         (f = entryForHash(this, hash)) != first) {
                    e = first = f; // re-traverse if entry changed
                    retries = -1;
                }
            }
            return node;
        }

        /**
         * Scans for a node containing the given key while trying to
         * acquire lock for a remove or replace operation. Upon
         * return, guarantees that lock is held.  Note that we must
         * lock even if the key is not found, to ensure sequential
         * consistency of updates.
         */
        private void scanAndLock(Object key, int hash) {
            // similar to but simpler than scanAndLockForPut
            HashEntry<K,V> first = entryForHash(this, hash);
            HashEntry<K,V> e = first;
            int retries = -1;
            while (!tryLock()) {
                HashEntry<K,V> f;
                if (retries < 0) {
                    if (e == null || key.equals(e.key))
                        retries = 0;
                    else
                        e = e.next;
                }
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                else if ((retries & 1) == 0 &&
                         (f = entryForHash(this, hash)) != first) {
                    e = first = f;
                    retries = -1;
                }
            }
        }

        /**
         * Remove; match on key only if value null, else match both.
         */
        final V remove(Object key, int hash, Object value) {
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry<K,V> e = entryAt(tab, index);
                HashEntry<K,V> pred = null;
                while (e != null) {
                    K k;
                    HashEntry<K,V> next = e.next;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        V v = e.value;
                        if (value == null || value == v || value.equals(v)) {
                            if (pred == null)
                                setEntryAt(tab, index, next);
                            else
                                pred.setNext(next);
                            ++modCount;
                            --count;
                            oldValue = v;
                        }
                        break;
                    }
                    pred = e;
                    e = next;
                }
            } finally {
                unlock();
            }
            return oldValue;
        }

        final boolean replace(K key, int hash, V oldValue, V newValue) {
            if (!tryLock())
                scanAndLock(key, hash);
            boolean replaced = false;
            try {
                HashEntry<K,V> e;
                for (e = entryForHash(this, hash); e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        if (oldValue.equals(e.value)) {
                            e.value = newValue;
                            ++modCount;
                            replaced = true;
                        }
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return replaced;
        }

        final V replace(K key, int hash, V value) {
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry<K,V> e;
                for (e = entryForHash(this, hash); e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        oldValue = e.value;
                        e.value = value;
                        ++modCount;
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }

        final void clear() {
            lock();
            try {
                HashEntry<K,V>[] tab = table;
                for (int i = 0; i < tab.length ; i++)
                    setEntryAt(tab, i, null);
                ++modCount;
                count = 0;
            } finally {
                unlock();
            }
        }
    }
View Code

ConcurrentHashMap中的可以同时多个get,一个put,在get的时候可能会与put的有冲突,在put赋值的时候,value可能为null,也可能读取到修改前,或后的值

如果读取到null,就进行加锁重新读取(readValueUnderLock),读取到修改前后的值是可以允许的。

http://www.jasongj.com/java/concurrenthashmap/

http://blog.csdn.net/prestigeding/article/details/53391264

http://www.infoq.com/cn/articles/ConcurrentHashMap/

http://www.cnblogs.com/ITtangtang/p/3948786.html

http://blog.csdn.net/xuefeng0707/article/details/40834595

http://mp.weixin.qq.com/s?__biz=MzIxMjE5MTE1Nw==&mid=2653192083&idx=1&sn=5c4becd5724dd72ad489b9ed466329f5&chksm=8c990d49bbee845f69345e4121888ec967df27988bc66afd984a25331d2f6464a61dc0335a54&scene=21#wechat_redirect

原文地址:https://www.cnblogs.com/hongdada/p/6041207.html