课程一(Neural Networks and Deep Learning)总结——2、Deep Neural Networks

Deep L-layer neural network

1 - General methodology

As usual you will follow the Deep Learning methodology to build the model:

1). Initialize parameters / Define hyperparameters

2). Loop for num_iterations:

    a. Forward propagation

    b. Compute cost function

    c. Backward propagation

    d. Update parameters (using parameters, and grads from backprop)

3). Use trained parameters to predict labels

2 - Architecture of your model

You will build two different models to distinguish cat images from non-cat images.

  • A 2-layer neural network
  • An L-layer deep neural network

2.1 - 2-layer neural network

 

Figure 1: 2-layer neural network. 
The model can be summarized as: INPUT -> LINEAR -> RELU -> LINEAR -> SIGMOID -> OUTPUT.

Detailed Architecture of figure 2:

  • The input is a (64,64,3) image which is flattened to a vector of size (12288,1).
  • The corresponding vectoris then multiplied by the weight matrix of size 
  • You then add a bias term and take its relu to get the following vector: 
  • You then repeat the same process.You multiply the resulting vector by and add your intercept (bias).
  • Finally, you take the sigmoid of the result. If it is greater than 0.5, you classify it to be a cat.

2.2 - L-layer deep neural network

Figure 2: L-layer neural network. 
The model can be summarized as: [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID

Detailed Architecture of figure 3:

  • The input is a (64,64,3) image which is flattened to a vector of size (12288,1).The corresponding vector is then multiplied by the weight matrixand then you add the intercept .The result is called the linear unit.
  • Next, you take the relu of the linear unit. This process could be repeated several times for each,depending on the model architecture.
  • Finally, you take the sigmoid of the final linear unit. If it is greater than 0.5, you classify it to be a cat.

3 - Two-layer neural network

Question: Use the helper functions you have implemented to build a 2-layer neural network with the following structure: LINEAR -> RELU -> LINEAR -> SIGMOID. The functions you may need and their inputs are:

def initialize_parameters(n_x, n_h, n_y):
    ...
    return parameters 
def linear_activation_forward(A_prev, W, b, activation):
    ...
    return A, cache
def compute_cost(AL, Y):
    ...
    return cost
def linear_activation_backward(dA, cache, activation):
    ...
    return dA_prev, dW, db
def update_parameters(parameters, grads, learning_rate):
    ...
return parameters
def predict(train_x, train_y, parameters):
    ...
    return Accuracy

3.1 - initialize_parameters(n_x, n_h, n_y)

Create and initialize the parameters of the 2-layer neural network.

Instructions:

  • The model's structure is: LINEAR -> RELU -> LINEAR -> SIGMOID.
  • Use random initialization for the weight matrices. Use np.random.randn(shape)*0.01 with the correct shape.
  • Use zero initialization for the biases. Use np.zeros(shape).
# GRADED FUNCTION: initialize_parameters

def initialize_parameters(n_x, n_h, n_y):
    """
    Argument:
    n_x -- size of the input layer
    n_h -- size of the hidden layer
    n_y -- size of the output layer
    
    Returns:
    parameters -- python dictionary containing your parameters:
                    W1 -- weight matrix of shape (n_h, n_x)
                    b1 -- bias vector of shape (n_h, 1)
                    W2 -- weight matrix of shape (n_y, n_h)
                    b2 -- bias vector of shape (n_y, 1)
    """
    
    np.random.seed(1)
    
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = np.random.randn(n_h, n_x)*0.01
    b1 = np.zeros((n_h, 1))
    W2 = np.random.randn(n_y, n_h)*0.01
    b2 = np.zeros((n_y, 1))
    ### END CODE HERE ###
    
    assert(W1.shape == (n_h, n_x))
    assert(b1.shape == (n_h, 1))
    assert(W2.shape == (n_y, n_h))
    assert(b2.shape == (n_y, 1))
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
return parameters    

3.2 - linear_activation_forward(A_prev, W, b, activation)

# GRADED FUNCTION: linear_activation_forward

def linear_activation_forward(A_prev, W, b, activation):
    """
    Implement the forward propagation for the LINEAR->ACTIVATION layer

    Arguments:
    A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
    W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
    b -- bias vector, numpy array of shape (size of the current layer, 1)
    activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"

    Returns:
    A -- the output of the activation function, also called the post-activation value(后面的值) 
    cache -- a python dictionary containing "linear_cache" and "activation_cache";
             stored for computing the backward pass efficiently
    """
    
    if activation == "sigmoid":
        # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
        ### START CODE HERE ### (≈ 2 lines of code)
        Z, linear_cache =  linear_forward(A_prev, W, b)   # linear_cache (A_prev,W,b)
        A, activation_cache = sigmoid(Z)                  # activation_cache (Z)
        ### END CODE HERE ###
    
    elif activation == "relu":
        # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
        ### START CODE HERE ### (≈ 2 lines of code)
        Z, linear_cache =linear_forward(A_prev, W, b)   # linear_cache (A_prev,W,b)
        A, activation_cache = relu(Z)                 # activation_cache (Z)
        ### END CODE HERE ### 
    
    assert (A.shape == (W.shape[0], A_prev.shape[1]))
    cache = (linear_cache, activation_cache)   # cache (A_prev,W,b,Z)

    return A, cache

3.3 - compute_cost(AL, Y)

Compute the cross-entropy cost  J, using the following formula:

# GRADED FUNCTION: compute_cost

def compute_cost(AL, Y):
    """
    Implement the cost function defined by equation (7).

    Arguments:
    AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
    Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)

    Returns:
    cost -- cross-entropy cost
    """
    
    m = Y.shape[1]

    # Compute loss from aL and y.
    ### START CODE HERE ### (≈ 1 lines of code)
    cost = - (1/m)*(np.dot(Y, np.log(AL).T) + np.dot(1 - Y, np.log(1-AL).T)) 
    ### END CODE HERE ###
    
    cost = np.squeeze(cost)      # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
    assert(cost.shape == ())
    
    return cost 

3.4 - linear_activation_backward(dA, cache, activation)

# GRADED FUNCTION: linear_activation_backward

def linear_activation_backward(dA, cache, activation):
    """
    Implement the backward propagation for the LINEAR->ACTIVATION layer.
    
    Arguments:
    dA -- post-activation gradient for current layer l 
    cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
    activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
    
    Returns:
    dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
    dW -- Gradient of the cost with respect to W (current layer l), same shape as W
    db -- Gradient of the cost with respect to b (current layer l), same shape as b
    """
    linear_cache, activation_cache = cache
    
    if activation == "relu":
        ### START CODE HERE ### (≈ 2 lines of code)
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
        ### END CODE HERE ###
        
    elif activation == "sigmoid":
        ### START CODE HERE ### (≈ 2 lines of code)
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
        ### END CODE HERE ###
    
    return dA_prev, dW, db

3.5 - update_parameters

# GRADED FUNCTION: update_parameters

def update_parameters(parameters, grads, learning_rate):
    """
    Update parameters using gradient descent
    
    Arguments:
    parameters -- python dictionary containing your parameters 
    grads -- python dictionary containing your gradients, output of L_model_backward
    
    Returns:
    parameters -- python dictionary containing your updated parameters 
                  parameters["W" + str(l)] = ... 
                  parameters["b" + str(l)] = ...
    """
    
    L = len(parameters) // 2 # number of layers in the neural network

    # Update rule for each parameter. Use a for loop.
    ### START CODE HERE ### (≈ 3 lines of code)
    for l in range(1, L+1):   # l=`,2,3,...,L
         parameters["W" + str(l)] = parameters["W" + str(l)] - learning_rate*grads["dW" + str(l)]
         parameters["b" + str(l)] = parameters["b" + str(l)] - learning_rate*grads["db" + str(l)]
    ### END CODE HERE ###
    return parameters

3.6 - predict(train_x, train_y, parameters)

pred_train = predict(train_x, train_y, parameters)

4 - L-layer neural network

Question: Use the helper functions you have implemented previously to build an LL-layer neural network with the following structure: [LINEAR -> RELU]×(L-1) -> LINEAR -> SIGMOID. The functions you may need and their inputs are:

def initialize_parameters_deep(layer_dims):
    ...
    return parameters 
def L_model_forward(X, parameters):
    ...
    return AL, caches
def compute_cost(AL, Y):
    ...
    return cost
def L_model_backward(AL, Y, caches):
    ...
    return grads
def update_parameters(parameters, grads, learning_rate):
    ...
    return parameters
In [14]:
def predict(train_x, train_y, parameters):
    ...
    return Accuracy

4.1 - initialize_parameters_deep(layer_dims)

Implement initialization for an L-layer Neural Network.

Instructions:

  • The model's structure is [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID. I.e., it has L−1layers using a ReLU activation function followed by an output layer with a sigmoid activation function.
  • Use random initialization for the weight matrices. Use np.random.rand(shape) * 0.01.
  • Use zeros initialization for the biases. Use np.zeros(shape).
  • We will store , the number of units in different layers, in a variable layer_dims. For example, the layer_dims for the "Planar Data classification model" from last week would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. Thus means W1's shape was (4,2), b1 was (4,1), W2 was (1,4) and b2 was (1,1). Now you will generalize this to LL layers!
  • Here is the implementation for L=1(one layer neural network). It should inspire you to implement the general case (L-layer neural network).
 if L == 1:
      parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01
      parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))
# GRADED FUNCTION: initialize_parameters_deep

def initialize_parameters_deep(layer_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the dimensions of each layer in our network
    
    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                    bl -- bias vector of shape (layer_dims[l], 1)
    """
    
    np.random.seed(3)
    parameters = {}
    L = len(layer_dims)            # number of layers in the network

    for l in range(1, L):
        ### START CODE HERE ### (≈ 2 lines of code)
        parameters['W' + str(l)] =  np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01
        parameters['b' + str(l)] =  np.zeros((layer_dims[l], 1))
        ### END CODE HERE ###
        
        assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
        assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))

        
    return parameters

4.2 - L_model_forward(X, parameters)

# GRADED FUNCTION: L_model_forward

def L_model_forward(X, parameters):
    """
    Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation
    
    Arguments:
    X -- data, numpy array of shape (input size, number of examples)
    parameters -- output of initialize_parameters_deep()
    
    Returns:
    AL -- last post-activation value
    caches -- list of caches containing:
                every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2)
                the cache of linear_sigmoid_forward() (there is one, indexed L-1)
    """

    caches = []
    A = X
    L = len(parameters) // 2       # number of layers in the neural network
    
    # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
    for l in range(1, L):   #注意range是(1,L),最后的L不算进循环,l实际是从1到 L-1
        A_prev = A 
        ### START CODE HERE ### (≈ 2 lines of code)
        A, cache = linear_activation_forward(A_prev, parameters['W'+str(l)], parameters['b'+str(l)], activation = "relu")
        caches.append(cache)
        ### END CODE HERE ###
    
    # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
    ### START CODE HERE ### (≈ 2 lines of code)
    AL, cache = linear_activation_forward(A, parameters['W'+str(L)], parameters['b'+str(L)], activation = "sigmoid")
    caches.append(cache) 
    ### END CODE HERE ###
    
    assert(AL.shape == (1,X.shape[1]))
            
    return AL, caches   # caches (A_prev,W,b,Z)

4.3 - compute_cost(AL, Y)

Compute the cross-entropy cost J, using the following formula:

# GRADED FUNCTION: compute_cost

def compute_cost(AL, Y):
    """
    Implement the cost function defined by equation (7).

    Arguments:
    AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
    Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)

    Returns:
    cost -- cross-entropy cost
    """
    
    m = Y.shape[1]

    # Compute loss from aL and y.
    ### START CODE HERE ### (≈ 1 lines of code)
    cost = - (1/m)*(np.dot(Y, np.log(AL).T) + np.dot(1 - Y, np.log(1-AL).T)) 
    ### END CODE HERE ###
    
    cost = np.squeeze(cost)      # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
    assert(cost.shape == ())
    
    return cost

4.4 - L_model_backward(AL, Y, caches)

# GRADED FUNCTION: L_model_backward

def L_model_backward(AL, Y, caches):
    """
    Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group
    
    Arguments:
    AL -- probability vector, output of the forward propagation (L_model_forward())
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
    caches -- list of caches containing:
                every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)
                the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])
    
    Returns:
    grads -- A dictionary with the gradients
             grads["dA" + str(l)] = ... 
             grads["dW" + str(l)] = ...
             grads["db" + str(l)] = ... 
    """
    grads = {}
    L = len(caches) # the number of layers
    m = AL.shape[1]
    Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
    
    # Initializing the backpropagation
    ### START CODE HERE ### (1 line of code)
    dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # derivative of cost with respect to AL
    ### END CODE HERE ###
    
    # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
    ### START CODE HERE ### (approx. 2 lines)
    current_cache = caches[L-1]
    grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] =linear_activation_backward(dAL, current_cache, activation = "sigmoid")  
    ### END CODE HERE ###
    
    for l in reversed(range(L-1)):  # l=L-2,L-3,...,2,1,0
        # lth layer: (RELU -> LINEAR) gradients.
        # Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] 
        ### START CODE HERE ### (approx. 5 lines)
        current_cache =  caches[l]    # l= L-2,L-1,...,2,1,0   当l=L-2时
        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l+2)], current_cache, activation = "relu")  # l+2=L
        grads["dA" + str(l + 1)] = dA_prev_temp     #l=L-1
        grads["dW" + str(l + 1)] = dW_temp      #l+1=L-1
        grads["db" + str(l + 1)] = db_temp      #l+1=L-1
        ### END CODE HERE ###

    return grads

 

4.5 - update_parameters

# GRADED FUNCTION: update_parameters

def update_parameters(parameters, grads, learning_rate):
    """
    Update parameters using gradient descent
    
    Arguments:
    parameters -- python dictionary containing your parameters 
    grads -- python dictionary containing your gradients, output of L_model_backward
    
    Returns:
    parameters -- python dictionary containing your updated parameters 
                  parameters["W" + str(l)] = ... 
                  parameters["b" + str(l)] = ...
    """
    
    L = len(parameters) // 2 # number of layers in the neural network

    # Update rule for each parameter. Use a for loop.
    ### START CODE HERE ### (≈ 3 lines of code)
    for l in range(1, L+1):   # l=`,2,3,...,L
         parameters["W" + str(l)] = parameters["W" + str(l)] - learning_rate*grads["dW" + str(l)]
         parameters["b" + str(l)] = parameters["b" + str(l)] - learning_rate*grads["db" + str(l)]
    ### END CODE HERE ###
    return parameters

4.6 - predict(train_x, train_y, parameters)

pred_train = predict(train_x, train_y, parameters)

pred_test = predict(test_x, test_y, parameters)

 【参考】:

[1] https://hub.coursera-notebooks.org/user/rdzflaokljifhqibzgygqq/notebooks/Week%204/Deep%20Neural%20Network%20Application:%20Image%20Classification/Deep%20Neural%20Network%20-%20Application%20v3.ipynb

 [2] https://hub.coursera-notebooks.org/user/rdzflaokljifhqibzgygqq/notebooks/Week%204/Building%20your%20Deep%20Neural%20Network%20-%20Step%20by%20Step/Building%20your%20Deep%20Neural%20Network%20-%20Step%20by%20Step%20v5.ipynb

【附录】:

L层神经网络的详细推导,见hezhiyao的github:    https://github.com/hezhiyao/Deep-L-layer-neural-network-Notes

原文地址:https://www.cnblogs.com/hezhiyao/p/7922850.html