实例学习Bloom Filter

 

0. 科普
1. 为什么需要Bloom Filter
2. 基本原理
3. 如何设计Bloom Filter
4. 实例操作
5. 扩展

0. 科普

      Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射快速查找算法。通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合。

1. 为什么需要Bloom Filter

      举例说明:假设有2000万个url,现在判断一个新的url是否在这2000万个之中。可以有的思路:

  1. 将访问过的URL保存到数据库。
  2. 用HashSet将访问过的URL保存起来。那只需接近O(1)的代价就可以查到一个URL是否被访问过了。
  3. URL经过MD5等单向哈希后再保存到HashSet或数据库。
  4. Bit-Map方法。建立一个BitSet,将每个URL经过一个哈希函数映射到某一位。

分析

思路1:当数据量很大时,查询数据库变得效率底下

思路2:太消耗内存,还得把字符串全部储存起来

思路3:字符串经过MD5处理后有128个bit,比思路2省了很多空间

思路4:一个字符串仅用一位来表示,比思路3还节省空间

当然前提是会出现误判(哈希后表示相同),为了继承这么好的思路,同时减少误判的情况,可以来个折衷:一个哈希函数生成一个位,用多个哈希函数生成多个位来存储一个字符串。这样比Bit-Map多用了些空间,但是减少了误判率。

2. 基本原理

这样把大量的字符串存起来。查找时,用同样的哈希处理待查串,如果对应的各位上都为1,说明该字符串可能在这些字符串中,否则一定不在其中。

3. 如何设计Bloom Filter

如何降低误判率是关键,这需要

  • 选取区分度高的哈希函数
  • 根据存储数组、哈希函数个数、误判率之间的关系,分配空间、个数

直接利用前人的结论:

其中f'是自己期望的误判率,m是总共开辟的存储空间位数,n是待存储字符串的个数,k是哈希函数的个数,f是真正的误判率。

4. 实例操作

需求:2000万个已知url,100个待查url

设计

1. 设定误判率为0.1, n=2000万,计算

m = n * 1.44 * math.log(1/f)/math.log(2)=287014588
k = 0.693 * m / n= 10
f = (1 - math.exp(-1 * k * n / m)) ** k = 0.00101298781512

哈希函数的选取看这里

参考代码(c++)

复制代码
objects = main.o hash.o bloomfilter.o

main : $(objects)
    g++ -o main $(objects)

main.o : hash.h bloomfilter.h
bloomfilter.o : bloomfilter.h
hash.o : hash.h

clean:
    rm *.o main
复制代码

main.cc

复制代码
#include <iostream>
#include <fstream>
#include <sstream>
#include <cstring>
#include <string>
#include "bloomfilter.h"
using namespace std;

const int MAXSIZE = 400000000; 
int main(int argc, char **argv)
{
    char *poolfile = argv[1];
    char *testfile = argv[2];
    cout << poolfile << endl;
    ifstream fpool(poolfile);
    ifstream ftest(testfile);
    if(!fpool)
    {
        cout << "cannot open the file:" << poolfile << endl;
        return 0;
    }
    if(!ftest)
    {
        cout << "cannot open the file:" << testfile << endl;
        return 0;
    }
    BloomFilter bf(MAXSIZE);
    bf.setBit(fpool);
    cout << "Store OK" << endl;
    bf.checkBit(ftest);
    cout << "Check OK" << endl;
    fpool.close();
    ftest.close();
}
复制代码

bloomfilter.h

复制代码
#include <iostream>
#include <string>
#include <fstream>
#include <vector>
#include "hash.h"
using namespace std;
class BloomFilter
{
    public:
        BloomFilter(int size) : SIZE(size) { vec.resize(size); };
        void setBit(ifstream &f);
        void setBit(const string &s);
        void setBit(unsigned int count);

        bool checkBit(ifstream &f);
        bool checkBit(const string &s);
        bool checkBit(unsigned int count);
    private:
        vector<char> vec;
        const unsigned int SIZE;
};
复制代码

bloomfilter.cc

复制代码
#include "bloomfilter.h"

void BloomFilter::setBit(ifstream &f)
{
    string line;
    while(f >> line)
    {
        setBit(line);
    }
}

bool BloomFilter::checkBit(ifstream &f)
{
    string line;
    while(f >> line)
    {
        if(!checkBit(line))
            cout << line << endl;
    }
}

void BloomFilter::setBit(const string &s)
{
    unsigned int bitpos = 0;
    const char *str = s.c_str();
    int len = s.size();

    bitpos = RSHash(str, len);
    setBit(bitpos);
    bitpos = JSHash(str, len);
    setBit(bitpos);
    bitpos = PJWHash(str, len);
    setBit(bitpos);
    bitpos = ELFHash(str, len);
    setBit(bitpos);
    bitpos = BKDRHash(str, len);
    setBit(bitpos);
    bitpos = SDBMHash(str, len);
    setBit(bitpos);
    bitpos = DJBHash(str, len);
    setBit(bitpos);
    bitpos = DEKHash(str, len);
    setBit(bitpos);
    bitpos = BPHash(str, len);
    setBit(bitpos);
    bitpos = FNVHash(str, len);
    setBit(bitpos);
}

bool BloomFilter::checkBit(const string &s)
{
    unsigned int bitpos = 0;
    const char *str = s.c_str();
    int len = s.size();
    bool rev = true;

    bitpos = RSHash(str, len);
    rev &= checkBit(bitpos);
    bitpos = JSHash(str, len);
    rev &= checkBit(bitpos);
    bitpos = PJWHash(str, len);
    rev &= checkBit(bitpos);
    bitpos = ELFHash(str, len);
    rev &= checkBit(bitpos);
    bitpos = BKDRHash(str, len);
    rev &= checkBit(bitpos);
    bitpos = SDBMHash(str, len);
    rev &= checkBit(bitpos);
    bitpos = DJBHash(str, len);
    rev &= checkBit(bitpos);
    bitpos = DEKHash(str, len);
    rev &= checkBit(bitpos);
    bitpos = BPHash(str, len);
    rev &= checkBit(bitpos);
    bitpos = FNVHash(str, len);
    rev &= checkBit(bitpos);
    return rev;
}

void BloomFilter::setBit(unsigned int count)
{
    count = count % (SIZE * 8);
    vec[count / 8] |= (1 << (count % 8));
}

bool BloomFilter::checkBit(unsigned int count)
{
    count = count % (SIZE * 8);
    return vec[count / 8] &= (1 << (count % 8));
}
复制代码

hash.h

复制代码
unsigned int RSHash(const char* str, unsigned int len);
unsigned int JSHash(const char* str, unsigned int len);
unsigned int PJWHash(const char* str, unsigned int len);
unsigned int ELFHash(const char* str, unsigned int len);
unsigned int BKDRHash(const char* str, unsigned int len);
unsigned int SDBMHash(const char* str, unsigned int len);
unsigned int DJBHash(const char* str, unsigned int len);
unsigned int DEKHash(const char* str, unsigned int len);
unsigned int BPHash(const char* str, unsigned int len);
unsigned int FNVHash(const char* str, unsigned int len);
复制代码

hash.cc

复制代码
#include "hash.h"
unsigned int RSHash(const char* str, unsigned int len)
{
   unsigned int b = 378551;
   unsigned int a = 63689;
   unsigned int hash = 0;
   unsigned int i = 0;

   for(i=0; i<len; str++, i++)
   {
      hash = hash*a + (*str);
      a = a*b;
   }

   return hash;
}
/* End Of RS Hash Function */


unsigned int JSHash(const char* str, unsigned int len)
{
   unsigned int hash = 1315423911;
   unsigned int i    = 0;

   for(i=0; i<len; str++, i++)
   {
      hash ^= ((hash<<5) + (*str) + (hash>>2));
   }

   return hash;
}
/* End Of JS Hash Function */


unsigned int PJWHash(const char* str, unsigned int len)
{
   const unsigned int BitsInUnsignedInt = (unsigned int)(sizeof(unsigned int) * 8);
   const unsigned int ThreeQuarters = (unsigned int)((BitsInUnsignedInt  * 3) / 4);
   const unsigned int OneEighth = (unsigned int)(BitsInUnsignedInt / 8);
   const unsigned int HighBits = (unsigned int)(0xFFFFFFFF) << (BitsInUnsignedInt - OneEighth);
   unsigned int hash = 0;
   unsigned int test = 0;
   unsigned int i = 0;

   for(i=0;i<len; str++, i++)
   {
      hash = (hash<<OneEighth) + (*str);

      if((test = hash & HighBits)  != 0)
      {
         hash = ((hash ^(test >> ThreeQuarters)) & (~HighBits));
      }
   }

   return hash;
}
/* End Of  P. J. Weinberger Hash Function */


unsigned int ELFHash(const char* str, unsigned int len)
{
   unsigned int hash = 0;
   unsigned int x    = 0;
   unsigned int i    = 0;

   for(i = 0; i < len; str++, i++)
   {
      hash = (hash << 4) + (*str);
      if((x = hash & 0xF0000000L) != 0)
      {
         hash ^= (x >> 24);
      }
      hash &= ~x;
   }

   return hash;
}
/* End Of ELF Hash Function */


unsigned int BKDRHash(const char* str, unsigned int len)
{
   unsigned int seed = 131; /* 31 131 1313 13131 131313 etc.. */
   unsigned int hash = 0;
   unsigned int i    = 0;

   for(i = 0; i < len; str++, i++)
   {
      hash = (hash * seed) + (*str);
   }

   return hash;
}
/* End Of BKDR Hash Function */


unsigned int SDBMHash(const char* str, unsigned int len)
{
   unsigned int hash = 0;
   unsigned int i    = 0;

   for(i = 0; i < len; str++, i++)
   {
      hash = (*str) + (hash << 6) + (hash << 16) - hash;
   }

   return hash;
}
/* End Of SDBM Hash Function */


unsigned int DJBHash(const char* str, unsigned int len)
{
   unsigned int hash = 5381;
   unsigned int i    = 0;

   for(i = 0; i < len; str++, i++)
   {
      hash = ((hash << 5) + hash) + (*str);
   }

   return hash;
}
/* End Of DJB Hash Function */


unsigned int DEKHash(const char* str, unsigned int len)
{
   unsigned int hash = len;
   unsigned int i    = 0;

   for(i = 0; i < len; str++, i++)
   {
      hash = ((hash << 5) ^ (hash >> 27)) ^ (*str);
   }
   return hash;
}
/* End Of DEK Hash Function */


unsigned int BPHash(const char* str, unsigned int len)
{
   unsigned int hash = 0;
   unsigned int i    = 0;
   for(i = 0; i < len; str++, i++)
   {
      hash = hash << 7 ^ (*str);
   }

   return hash;
}
/* End Of BP Hash Function */


unsigned int FNVHash(const char* str, unsigned int len)
{
   const unsigned int fnv_prime = 0x811C9DC5;
   unsigned int hash      = 0;
   unsigned int i         = 0;

   for(i = 0; i < len; str++, i++)
   {
      hash *= fnv_prime;
      hash ^= (*str);
   }

   return hash;
}
/* End Of FNV Hash Function */
复制代码
复制代码
#include "hash.h"
unsigned int RSHash(const char* str, unsigned int len)
{
   unsigned int b = 378551;
   unsigned int a = 63689;
   unsigned int hash = 0;
   unsigned int i = 0;

   for(i=0; i<len; str++, i++)
   {
      hash = hash*a + (*str);
      a = a*b;
   }

   return hash;
}
/* End Of RS Hash Function */


unsigned int JSHash(const char* str, unsigned int len)
{
   unsigned int hash = 1315423911;
   unsigned int i    = 0;

   for(i=0; i<len; str++, i++)
   {
      hash ^= ((hash<<5) + (*str) + (hash>>2));
   }

   return hash;
}
/* End Of JS Hash Function */


unsigned int PJWHash(const char* str, unsigned int len)
{
   const unsigned int BitsInUnsignedInt = (unsigned int)(sizeof(unsigned int) * 8);
   const unsigned int ThreeQuarters = (unsigned int)((BitsInUnsignedInt  * 3) / 4);
   const unsigned int OneEighth = (unsigned int)(BitsInUnsignedInt / 8);
   const unsigned int HighBits = (unsigned int)(0xFFFFFFFF) << (BitsInUnsignedInt - OneEighth);
   unsigned int hash = 0;
   unsigned int test = 0;
   unsigned int i = 0;

   for(i=0;i<len; str++, i++)
   {
      hash = (hash<<OneEighth) + (*str);

      if((test = hash & HighBits)  != 0)
      {
         hash = ((hash ^(test >> ThreeQuarters)) & (~HighBits));
      }
   }

   return hash;
}
/* End Of  P. J. Weinberger Hash Function */


unsigned int ELFHash(const char* str, unsigned int len)
{
   unsigned int hash = 0;
   unsigned int x    = 0;
   unsigned int i    = 0;

   for(i = 0; i < len; str++, i++)
   {
      hash = (hash << 4) + (*str);
      if((x = hash & 0xF0000000L) != 0)
      {
         hash ^= (x >> 24);
      }
      hash &= ~x;
   }

   return hash;
}
/* End Of ELF Hash Function */


unsigned int BKDRHash(const char* str, unsigned int len)
{
   unsigned int seed = 131; /* 31 131 1313 13131 131313 etc.. */
   unsigned int hash = 0;
   unsigned int i    = 0;

   for(i = 0; i < len; str++, i++)
   {
      hash = (hash * seed) + (*str);
   }

   return hash;
}
/* End Of BKDR Hash Function */


unsigned int SDBMHash(const char* str, unsigned int len)
{
   unsigned int hash = 0;
   unsigned int i    = 0;

   for(i = 0; i < len; str++, i++)
   {
      hash = (*str) + (hash << 6) + (hash << 16) - hash;
   }

   return hash;
}
/* End Of SDBM Hash Function */


unsigned int DJBHash(const char* str, unsigned int len)
{
   unsigned int hash = 5381;
   unsigned int i    = 0;

   for(i = 0; i < len; str++, i++)
   {
      hash = ((hash << 5) + hash) + (*str);
   }

   return hash;
}
/* End Of DJB Hash Function */


unsigned int DEKHash(const char* str, unsigned int len)
{
   unsigned int hash = len;
   unsigned int i    = 0;

   for(i = 0; i < len; str++, i++)
   {
      hash = ((hash << 5) ^ (hash >> 27)) ^ (*str);
   }
   return hash;
}
/* End Of DEK Hash Function */


unsigned int BPHash(const char* str, unsigned int len)
{
   unsigned int hash = 0;
   unsigned int i    = 0;
   for(i = 0; i < len; str++, i++)
   {
      hash = hash << 7 ^ (*str);
   }

   return hash;
}
/* End Of BP Hash Function */


unsigned int FNVHash(const char* str, unsigned int len)
{
   const unsigned int fnv_prime = 0x811C9DC5;
   unsigned int hash      = 0;
   unsigned int i         = 0;

   for(i = 0; i < len; str++, i++)
   {
      hash *= fnv_prime;
      hash ^= (*str);
   }

   return hash;
}
/* End Of FNV Hash Function */
复制代码

数据下载:http://pan.baidu.com/s/1hqBTks0

Github 地址:https://github.com/jihite/Bloom-Filter

5. 扩展

如何删除存储数组中的元素?

思路:把存储数组的每一个元素扩展一下(原来是1b)用来存储该位置被置1的次数。存储是,计数次数加一;删除的时候,计数次数减一。

下面一篇,将更加详细阐述:

Bloom filter 过滤(布隆过滤算法)原理(转)

http://blog.csdn.net/luyee2010/article/details/8511498

http://blog.csdn.net/jiaomeng/article/details/1495500

一,什么是Bloom filter 

Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员,这种检测只会对在集合内的数据错判,而不会对不是集合内的数据进行错判,这样每个检测请求返回有“在集合内(可能错误)”和“不在集合内(绝对不在集合内)”两种情况,可见 Bloom filter 是牺牲了正确率换取时间和空间。

二,bloom filter的计算方法

如需要判断一个元素是不是在一个集合中,我们通常做法是把所有元素保存下来,然后通过比较知道它是不是在集合内,链表、树都是基于这种思路,当集合内元素个数的变大,我们需要的空间和时间都线性变大,检索速度也越来越慢。 Bloom filter 采用的是哈希函数的方法,将一个元素映射到一个 m 长度的阵列上的一个点,当这个点是 1 时,那么这个元素在集合内,反之则不在集合内。这个方法的缺点就是当检测的元素量很多时候可能有冲突,解决方法就是使用 k 个哈希 函数对应 k 个点,如果所有点都是 1 的话,那么元素在集合内,如果有 0 的话,元素则不再集合内。

三,bloom filter的特点

Bloom filter 优点就是它的插入和查询时间都是常数,另外它查询元素却不保存元素本身,具有良好的安全性。它的缺点也是显而易见的,当插入的元素越多,错判“在集合内”的概率就越大了,另外 Bloom filter 也不能删除一个元素,因为多个元素哈希的结果可能在 Bloom filter 结构中占用的是同一个位,如果删除了一个比特位,可能会影响多个元素的检测。

集合表示和元素查询

下面我们具体来看Bloom Filter是如何用位数组表示集合的。初始状态时,Bloom Filter是一个包含m位的位数组,每一位都置为0。

为了表达S={x1, x2,…,xn}这样一个n个元素的集合,Bloom Filter使用k个相互独立的哈希函数(Hash Function),它们分别将集合中的每个元素映射到{1,…,m}的范围中。对任意一个元素x,第i个哈希函数映射的位置hi(x)就会被置为1(1≤i≤k)。注意,如果一个位置多次被置为1,那么只有第一次会起作用,后面几次将没有任何效果。在下图中,k=3,且有两个哈希函数选中同一个位置(从左边数第五位)。

在判断y是否属于这个集合时,我们对y应用k次哈希函数,如果所有hi(y)的位置都是1(1≤i≤k),那么我们就认为y是集合中的元素,否则就认为y不是集合中的元素。下图中y1就不是集合中的元素。y2或者属于这个集合,或者刚好是一个false positive。

错误率估计

前面我们已经提到了,Bloom Filter在判断一个元素是否属于它表示的集合时会有一定的错误率(false positive rate),下面我们就来估计错误率的大小。在估计之前为了简化模型,我们假设kn<m且各个哈希函数是完全随机的。当集合S={x1, x2,…,xn}的所有元素都被k个哈希函数映射到m位的位数组中时,这个位数组中某一位还是0的概率是:

其中1/m表示任意一个哈希函数选中这一位的概率(前提是哈希函数是完全随机的),(1-1/m)表示哈希一次没有选中这一位的概率。要把S完全映射到位数组中,需要做kn次哈希。某一位还是0意味着kn次哈希都没有选中它,因此这个概率就是(1-1/m)的kn次方。令p = e-kn/m是为了简化运算,这里用到了计算e时常用的近似:

令ρ为位数组中0的比例,则ρ的数学期望E(ρ)= p’。在ρ已知的情况下,要求的错误率(false positive rate)为:

(1-ρ)为位数组中1的比例,(1-ρ)k就表示k次哈希都刚好选中1的区域,即false positive rate。上式中第二步近似在前面已经提到了,现在来看第一步近似。p’只是ρ的数学期望,在实际中ρ的值有可能偏离它的数学期望值。M. Mitzenmacher已经证明[2] ,位数组中0的比例非常集中地分布在它的数学期望值的附近。因此,第一步的近似得以成立。分别将p和p’代入上式中,得:

相比p’和f’,使用p和f通常在分析中更为方便。

最优的哈希函数个数

既然Bloom Filter要靠多个哈希函数将集合映射到位数组中,那么应该选择几个哈希函数才能使元素查询时的错误率降到最低呢?这里有两个互斥的理由:如果哈希函数的个数多,那么在对一个不属于集合的元素进行查询时得到0的概率就大;但另一方面,如果哈希函数的个数少,那么位数组中的0就多。为了得到最优的哈希函数个数,我们需要根据上一小节中的错误率公式进行计算。

先用p和f进行计算。注意到f = exp(k ln(1 ? e?kn/m)),我们令g = k ln(1 ? e?kn/m),只要让g取到最小,f自然也取到最小。由于p = e-kn/m,我们可以将g写成

根据对称性法则可以很容易看出当p = 1/2,也就是k = ln2· (m/n)时,g取得最小值。在这种情况下,最小错误率f等于(1/2)k ≈ (0.6185)m/n。另外,注意到p是位数组中某一位仍是0的概率,所以p = 1/2对应着位数组中0和1各一半。换句话说,要想保持错误率低,最好让位数组有一半还空着。

需要强调的一点是,p = 1/2时错误率最小这个结果并不依赖于近似值p和f。同样对于f’ = exp(k ln(1 ? (1 ? 1/m)kn)),g’ = k ln(1 ? (1 ? 1/m)kn),p’ = (1 ? 1/m)kn,我们可以将g’写成

同样根据对称性法则可以得到当p’ = 1/2时,g’取得最小值。

位数组的大小

下面我们来看看,在不超过一定错误率的情况下,Bloom Filter至少需要多少位才能表示全集中任意n个元素的集合。假设全集中共有u个元素,允许的最大错误率为?,下面我们来求位数组的位数m。

假设X为全集中任取n个元素的集合,F(X)是表示X的位数组。那么对于集合X中任意一个元素x,在s = F(X)中查询x都能得到肯定的结果,即s能够接受x。显然,由于Bloom Filter引入了错误,s能够接受的不仅仅是X中的元素,它还能够? (u - n)个false positive。因此,对于一个确定的位数组来说,它能够接受总共n + ? (u - n)个元素。在n + ? (u - n)个元素中,s真正表示的只有其中n个,所以一个确定的位数组可以表示

个集合。m位的位数组共有2m个不同的组合,进而可以推出,m位的位数组可以表示

个集合。全集中n个元素的集合总共有

个,因此要让m位的位数组能够表示所有n个元素的集合,必须有

即:

上式中的近似前提是n和?u相比很小,这也是实际情况中常常发生的。根据上式,我们得出结论:在错误率不大于?的情况下,m至少要等于n log2(1/?)才能表示任意n个元素的集合。

上一小节中我们曾算出当k = ln2· (m/n)时错误率f最小,这时f = (1/2)k = (1/2)mln2 / n。现在令f≤?,可以推出

这个结果比前面我们算得的下界n log2(1/?)大了log2 e ≈ 1.44倍。这说明在哈希函数的个数取到最优时,要让错误率不超过?,m至少需要取到最小值的1.44倍。

总结

在计算机科学中,我们常常会碰到时间换空间或者空间换时间的情况,即为了达到某一个方面的最优而牺牲另一个方面。Bloom Filter在时间空间这两个因素之外又引入了另一个因素:错误率。在使用Bloom Filter判断一个元素是否属于某个集合时,会有一定的错误率。也就是说,有可能把不属于这个集合的元素误认为属于这个集合(False Positive),但不会把属于这个集合的元素误认为不属于这个集合(False Negative)。在增加了错误率这个因素之后,Bloom Filter通过允许少量的错误来节省大量的存储空间。

原文地址:https://www.cnblogs.com/hd-zg/p/4956261.html