usb gadge驱动设计之我是zero

此处将以zero.c为例进行讲解。

第一次接触zero.c驱动的时候,是因为某项目需要,提供一种usb字符设备,希望能够通过字符设备打开,读取和发送文件。当时能想到的就是zero.c文件,本打算按照zero驱动的编写方式,自己编写一个字符驱动,但后来为了节省工作时间,直接修改zero驱动,增加了字符设备的注册和操作函数。

zero.c驱动提供了丰富的功能接口,既包含自收自发的loopback(回环功能),又包含了主从通信的source link功能。该两功分别绑定各自的配置,配置在实际使用的过程中,是不同共存的,只能切换操作,当然,如果你足够厉害,将两功能汇总到一个配置里面,也不是不可能的事。该两种功能的具体实现会在下面详细介绍。

zero.c驱动功能上主要是实现了两个bulk端点,in和out,根据选定的配置,in和out针对性就不同了。但是如果你要是想和host端主机通信,source link功能必然是完美的选择,因为loopback顾明思意,就是采用的回环功能。

 在介绍zero.c驱动过的实现之前,先介绍下zero中相关的变量和函数。

variable : //该驱动涉及到的变量和结构体。
 ||     autoresume          
 ||     autoresume_interval_
 ||     autoresume_step_ms  
 ||     autoresume_timer      //表示zero设备与resume操作相关。||     dev_strings           //设备字符串描述符
 ||     device_desc           //设备描述符,唯一
 ||     func_inst_lb          //loopback功能实例   此处特别的重要
 ||     func_inst_ss          //source link功能实例,也特别的重要。
 ||     func_lb               //loopback接口,又称功能
 ||     func_ss               //source link接口,又称功能
 ||     gzero_options         //涉及到zero设备中packet和bulk_buf长度等||     longname              //产品名称||     loopdefault           //是否支持loopback功能通过该变量判定,为0表示选择source link功能。
 ||     max_autoresume        //最长的自动恢复时间,与定时器设置相关
 ||     otg_desc              //关于otg功能的
 ||     otg_descriptor       
 ||     serial                /Serial 变量存储的是设备序列号,对于一个非正式设备,显得不是那么重要,随便填充一下
 ||     sourcesink_driver     //基本上后缀命名的driver表示是usb config
 ||     strings_dev           //字符串描述符
 ||     stringtab_dev         //gadget字符串描述符,包括字符串描述符,以及支持的语种。默认是英文。
 ||     zero_driver           //usb_composite_driver

 function                       
   ||     cleanup             //卸载驱动函数。 
   ||     init                //驱动注册函数。
   ||     ss_config_setup     //枚举响应函数,只有source link功能支持。
   ||     zero_autoresum      //定时器调用函数
   ||     zero_bind           //没有绑定,就没有各种配置和接口的实现,也就没有驱动和设备的绑定
   ||     zero_resume         //个人认为主要是省电模式采用,设备处于空闲时,进入挂起状态,被唤醒后自动回复正常状态
    || zero_suspend           //设备挂起。

|| zero_unbind //是否功能和功能实例。

之所以介绍zero驱动的相关变量、结构体和函数主要是为了对驱动整体框架有所了解。在分析该驱动的过程中,我们主要关注那些点,以及这些是怎么封装的,这样会对我们改zero驱动会有很大的帮助。

1=======模块的注册和卸载。此处不用多讲,我的另一篇文章linux usb gadget框架概述已经较为详细的介绍了驱动的注册过程。

403 static __refdata struct usb_composite_driver zero_driver = {
404     .name       = "zero",
405     .dev        = &device_desc,
406     .strings    = dev_strings,
407     .max_speed  = USB_SPEED_SUPER, //此处还支持usb3.0?没有测试过。
408     .bind       = zero_bind,
409     .unbind     = zero_unbind,
410     .suspend    = zero_suspend,
411     .resume     = zero_resume,
412 }; 
413    
414 MODULE_AUTHOR("David Brownell");
415 MODULE_LICENSE("GPL");
416    
417 static int __init init(void)
418 {  
419     return usb_composite_probe(&zero_driver);
420 }
  421 module_init(init);
  422    
  423 static void __exit cleanup(void)
  424 {  
  425     usb_composite_unregister(&zero_driver);
  426 }                                                                                                                   
  427 module_exit(cleanup);

2=====填充设备描述符。

  112 static struct usb_device_descriptor device_desc = {
  113     .bLength =      sizeof device_desc,
  114     .bDescriptorType =  USB_DT_DEVICE,//描述符类型,此处表示设备描述符,非接口描述符
  115                                     
  116     .bcdUSB =       cpu_to_le16(0x0200),
  117     .bDeviceClass =     USB_CLASS_VENDOR_SPEC, //#define USB_CLASS_VENDOR_SPEC   0xff 表示产商自定义类设备
  118                                     
  119     .idVendor =     cpu_to_le16(DRIVER_VENDOR_NUM),
  120     .idProduct =        cpu_to_le16(DRIVER_PRODUCT_NUM),
  121     .bNumConfigurations =   2,      //介绍该设备有几个配置,此处写的两个,真好是loopback和source link两个配置。
  122 }; 

3=====填充字符描述符。基本上usb_gadget_strings都是这个德行,封装三层,最后填充到zero_driver的.strings = dev_strings,中去。

150 static struct usb_string strings_dev[] = {
151     [USB_GADGET_MANUFACTURER_IDX].s = "",
152     [USB_GADGET_PRODUCT_IDX].s = longname,
153     [USB_GADGET_SERIAL_IDX].s = serial,
154     [USB_GZERO_SS_DESC].s   = "source and sink data",
155     [USB_GZERO_LB_DESC].s   = "loop input to output",
156     {  }            /* end of list */
157 };      
158         
159 static struct usb_gadget_strings stringtab_dev = {
160     .language   = 0x0409,   /* en-us */
161     .strings    = strings_dev,
162 };      
163         
164 static struct usb_gadget_strings *dev_strings[] = {
165     &stringtab_dev,
166     NULL,
167 }; 

 ==========填充配置描述符。loopback_driver&sourcesink_driver

  242 static struct usb_configuration sourcesink_driver = {
  243     .label                  = "source/sink",  //标签在主机枚举的时候获取,如果主机是window,可以在管理/设备管理器中找到
  244     .setup                  = ss_config_setup, //setup主要是响应枚举过程中控制请求某些特效的操作。
  245     .bConfigurationValue    = 3, //当使用SetConfiguration和GetConfiguration请求时所指定的配置索引值。这个在响应枚举过程是十分重要的。
  246     .bmAttributes           = USB_CONFIG_ATT_SELFPOWER,    //自供电                                                         
  247     /* .iConfiguration      = DYNAMIC */
  248 };  
  220 static struct usb_configuration loopback_driver = {
  221     .label          = "loopback",
  222     .bConfigurationValue = 2,    
  223     .bmAttributes   = USB_CONFIG_ATT_SELFPOWER,
  224     /* .iConfiguration = DYNAMIC */                                                                                 
  225 };  

 ==========填充接口描述符。func_ss&func_lb

该接口的实现挺有技巧的,下面详细讲述之。

227 static struct usb_function *func_ss; 
  228 static struct usb_function_instance *func_inst_ss; //视乎编写一个gadget驱动的通用方法需要填充一个功能实例。
  269 static struct usb_function *func_lb;
  270 static struct usb_function_instance *func_inst_lb; 

//首先,填充usb_function_instance 这个结构体。
 func_inst_ss = usb_get_function_instance("SourceSink");  
 func_inst_lb = usb_get_function_instance("Loopback");

38 struct usb_function_instance *usb_get_function_instance(const char *name) //此处是怎么通过字符串得到的功能实例呢?
39 {
40 struct usb_function_instance *fi;
41 int ret;
42
43 fi = try_get_usb_function_instance(name);
44 if (!IS_ERR(fi))
45 return fi;
46 ret = PTR_ERR(fi);
47 if (ret != -ENOENT)
48 return fi;
49 ret = request_module("usbfunc:%s", name);
50 if (ret < 0)
51 return ERR_PTR(ret);
52 return try_get_usb_function_instance(name); //关键在于这个函数。
53 }

11 static struct usb_function_instance *try_get_usb_function_instance(const char *name)
12 {
13 struct usb_function_driver *fd;
14 struct usb_function_instance *fi;
15
16 fi = ERR_PTR(-ENOENT);
17 mutex_lock(&func_lock);
18 list_for_each_entry(fd, &func_list, list) {  //便利所有的功能链表,通过功能链表获取功能驱动,那功能驱动从哪里来的?那就设计到每个功能驱动的注册了。
19
20 if (strcmp(name, fd->name))
21 continue;
22
23 if (!try_module_get(fd->mod)) {
24 fi = ERR_PTR(-EBUSY);
25 break;
26 }
27 fi = fd->alloc_inst();  //功能实例是在这里生成的。
28 if (IS_ERR(fi))
29 module_put(fd->mod);
30 else
31 fi->fd = fd;
32 break;
33 }
34 mutex_unlock(&func_lock);
35 return fi;
36 }

那现在问题的关键点是在于找到usb_function_driver这个结构体,驱动肯定是需要调用注册函数进行注册的,功能驱动肯定是在各自功能实现文件里。

f_sourcesink.c f_loopback.c 

usb_function_register(&SourceSinkusb_func); 
 90 int usb_function_register(struct usb_function_driver *newf)
 91 {          
 92     struct usb_function_driver *fd;
 93     int ret;
 94            
 95     ret = -EEXIST;
 96            
 97     mutex_lock(&func_lock);
 98     list_for_each_entry(fd, &func_list, list) { 
 99         if (!strcmp(fd->name, newf->name))                                                                            
100             goto out;
101     }      
102     ret = 0;
103     list_add_tail(&newf->list, &func_list); //从该函数可以看出,该注册函数正好是讲功能实例结构体中的链表加入全局链表func_list中,这样通过list_for_entry就可以获取实例了
104 out: 

105 mutex_unlock(&func_lock);

106 return ret; 107 }

那SourceSinkusb_func这个变量从哪里来呢?用ag搜索了整个内核目录都没有找到,这个时候不得不好好分析linux中宏定义的厉害了。

1224 DECLARE_USB_FUNCTION(SourceSink, source_sink_alloc_inst,                                                             
1225         source_sink_alloc_func);

489 #define DECLARE_USB_FUNCTION(_name, _inst_alloc, _func_alloc)       
490     static struct usb_function_driver _name ## usb_func = {       //这个地方就不用过多的介绍了吧。
491         .name = __stringify(_name),             
492         .mod  = THIS_MODULE,                    
493         .alloc_inst = _inst_alloc,                        //所以在try_get_usb_function_instance函数中其实才是真正的开始对功能实例进行初始化。
494         .alloc_func = _func_alloc,                        //usb_get_function其实也是调用的该函数实现得功能的初始化。
495     };                              
496     MODULE_ALIAS("usbfunc:"__stringify(_name));
下面在再来看一下alloc_func做了哪些操作。
865 static struct usb_function *source_sink_alloc_func(
 866         struct usb_function_instance *fi)                                                                            
 867 {                            
 868     struct f_sourcesink     *ss;
 869     struct f_ss_opts    *ss_opts;
 870                              
 871     ss = kzalloc(sizeof(*ss), GFP_KERNEL);
 872     if (!ss)                 
 873         return NULL;         
 874                              
 875     ss_opts =  container_of(fi, struct f_ss_opts, func_inst);
 876                              
 877     mutex_lock(&ss_opts->lock);
 878     ss_opts->refcnt++;       
 879     mutex_unlock(&ss_opts->lock);
 880                              
 881     pattern = ss_opts->pattern;
 882     isoc_interval = ss_opts->isoc_interval;
 883     isoc_maxpacket = ss_opts->isoc_maxpacket;
 884     isoc_mult = ss_opts->isoc_mult;
 885     isoc_maxburst = ss_opts->isoc_maxburst;
 886     buflen = ss_opts->bulk_buflen;
 887                              
 888     ss->function.name = "source/sink"; //填充功能名称
 889     ss->function.bind = sourcesink_bind;//主要实现了设备和驱动的绑定,已经端点的初始化的操作
 890     ss->function.set_alt = sourcesink_set_alt;//这个会根据配置中功能的先后顺序,将某个功能配置为0
 891     ss->function.get_alt = sourcesink_get_alt;
 892     ss->function.disable = sourcesink_disable;
 893     ss->function.setup = sourcesink_setup;
 894     ss->function.strings = sourcesink_strings;
 895                             
 896     ss->function.free_func = sourcesink_free_func;
 897                             
 898     return &ss->function;   
 899 }

 ==========填充端点描述符。 //端点描述符有两种一个是支持全是一种是支持高速,主要针对host端是否支持来定,在bind函数中,将其加入function中。

97 static struct usb_endpoint_descriptor fs_source_desc = { 
  98     .bLength =      USB_DT_ENDPOINT_SIZE,
  99     .bDescriptorType =  USB_DT_ENDPOINT,
 100                   
 101     .bEndpointAddress = USB_DIR_IN,
 102     .bmAttributes =     USB_ENDPOINT_XFER_BULK,
 103 };                
 104                   
 105 static struct usb_endpoint_descriptor fs_sink_desc = {
 106     .bLength =      USB_DT_ENDPOINT_SIZE,
 107     .bDescriptorType =  USB_DT_ENDPOINT,
 108                   
 109     .bEndpointAddress = USB_DIR_OUT,
 110     .bmAttributes =     USB_ENDPOINT_XFER_BULK,
 111 };                
 113 static struct usb_endpoint_descriptor fs_iso_source_desc = {
 114     .bLength =      USB_DT_ENDPOINT_SIZE,
 115     .bDescriptorType =  USB_DT_ENDPOINT,
 116                    
 117     .bEndpointAddress = USB_DIR_IN,
 118     .bmAttributes =     USB_ENDPOINT_XFER_ISOC,
 119     .wMaxPacketSize =   cpu_to_le16(1023),
 120     .bInterval =        4,
 121 };                 
 122                    
 123 static struct usb_endpoint_descriptor fs_iso_sink_desc = {
 124     .bLength =      USB_DT_ENDPOINT_SIZE,
 125     .bDescriptorType =  USB_DT_ENDPOINT,
 126                    
 127     .bEndpointAddress = USB_DIR_OUT,
 128     .bmAttributes =     USB_ENDPOINT_XFER_ISOC,
 129     .wMaxPacketSize =   cpu_to_le16(1023),
 130     .bInterval =        4,
 131 };
 133 static struct usb_descriptor_header *fs_source_sink_descs[] = {
 134     (struct usb_descriptor_header *) &source_sink_intf_alt0,  //在枚举过程中,都是通过usb_descriptor_header指针获取的。
 135     (struct usb_descriptor_header *) &fs_sink_desc,
 136     (struct usb_descriptor_header *) &fs_source_desc,
 137     (struct usb_descriptor_header *) &source_sink_intf_alt1,
 138 #define FS_ALT_IFC_1_OFFSET 3
 139     (struct usb_descriptor_header *) &fs_sink_desc,
 140     (struct usb_descriptor_header *) &fs_source_desc,
 141     (struct usb_descriptor_header *) &fs_iso_sink_desc,
 142     (struct usb_descriptor_header *) &fs_iso_source_desc,
 143     NULL,         
 144 }; 

 至此,从驱动注册,各种配置描述符的初始化和实现已经讲完,是不是感觉什么也没讲明白,那是因为你不熟悉gadaget驱动的注册和枚举响应过程,下面将花大量的篇幅介绍gadget设备的枚举过程。

枚举过程主要分为如下几个步骤:

 要了解gadget驱动的枚举过程,就必须了解usb设备的中断响应。要了解usb的中断响应就必须知道usb控制的注册过程,因为中断的注册实在控制器的注册中完成的。

下面将花少量篇幅介绍下udc的注册过程,以omap_udc.c为例进行讲解。

194 static struct platform_device udc_device = {
195 .name = "omap_udc",
196 .id = -1,
197 .dev = {
198 .dma_mask = &udc_dmamask,
199 .coherent_dma_mask = 0xffffffff,
200 },
201 .num_resources = ARRAY_SIZE(udc_resources),
202 .resource = udc_resources,
203 };

 114 static const char driver_name[] = "omap_udc"//此处是平台设备能够注册成功的关键,平台设备一般在板级信息中注册。
3026 static struct platform_driver udc_driver = {
3027     .probe      = omap_udc_probe,
3028     .remove     = omap_udc_remove,
3029     .suspend    = omap_udc_suspend,
3030     .resume     = omap_udc_resume,
3031     .driver     = {         
3032         .owner  = THIS_MODULE,
3033         .name   = (char *) driver_name,                                                                              
3034     },                      
3035 }; 
一当内核查找到平台设备和驱动设备中名称匹配,就会加重驱动,调用驱动probe函数
2731 static int omap_udc_probe(struct platform_device *pdev)
2732 {           
2733     int         status = -ENODEV;
2734     int         hmc;
2735     struct usb_phy      *xceiv = NULL;
2736     const char      *type = NULL;
2737     struct omap_usb_config  *config = pdev->dev.platform_data;
2738     struct clk      *dc_clk = NULL;
2739     struct clk      *hhc_clk = NULL;
2740             
2741     if (cpu_is_omap7xx())
2742         use_dma = 0;
2743             
2744     /* NOTE:  "knows" the order of the resources! */
2745     if (!request_mem_region(pdev->resource[0].start,
2746             pdev->resource[0].end - pdev->resource[0].start + 1,
2747             driver_name)) {
2748         DBG("request_mem_region failed
");
2749         return -EBUSY; 
2750     }                

。。。。。。。。。。。
2879     /* USB "non-iso" IRQ (PIO for all but ep0) */
2880     status = request_irq(pdev->resource[2].start, omap_udc_pio_irq,   //最关键的函数,一当host发起任何从设备相关的操作,都会调用该函数。
2881             0, "omap_udc pio", udc);
2882     if (status != 0) { 
2883         ERR("can't get irq %d, err %d
",
2884             (int) pdev->resource[2].start, status);
2885         goto cleanup2; 
2886     } 
1819 static irqreturn_t omap_udc_irq(int irq, void *_udc)
  1820 {   
  1821     struct omap_udc *udc = _udc;
  1822     u16     irq_src;
  1823     irqreturn_t status = IRQ_NONE;
  1824     unsigned long   flags;
  1825     
  1826     spin_lock_irqsave(&udc->lock, flags);
  1827     irq_src = omap_readw(UDC_IRQ_SRC);
  1828     
  1829     /* Device state change (usb ch9 stuff) */
  1830     if (irq_src & UDC_DS_CHG) {
  1831         devstate_irq(_udc, irq_src);
  1832         status = IRQ_HANDLED;
  1833         irq_src &= ~UDC_DS_CHG;
  1834     }   
  1835     
  1836     /* EP0 control transfers */
  1837     if (irq_src & (UDC_EP0_RX|UDC_SETUP|UDC_EP0_TX)) {//针对枚举过程,中断源肯定是控制端点0发送过来的。
  1838         ep0_irq(_udc, irq_src);//如果是控制端点,则调用端点0中断函数响应中断。
  1839         status = IRQ_HANDLED;
  1840         irq_src &= ~(UDC_EP0_RX|UDC_SETUP|UDC_EP0_TX);
  1841     }

//这个地方不对这个中断函数进行多讲,主要介绍其枚举响应分支。

  1667         default:                                     
  1668 delegate:                                            
  1669             /* activate the ep0out fifo right away */
  1670             if (!udc->ep0_in && w_length) {          
  1671                 omap_writew(0, UDC_EP_NUM);          
  1672                 omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
  1673             }                                       
  1674                                                     
  1675             /* gadget drivers see class/vendor specific requests,
  1676             ┊* {SET,GET}_{INTERFACE,DESCRIPTOR,CONFIGURATION},
  1677             ┊* and more          
  1678             ┊*/               
  1679             VDBG("SETUP %02x.%02x v%04x i%04x l%04x
",
  1680                 u.r.bRequestType, u.r.bRequest,     
  1681                 w_value, w_index, w_length);        
  1682                          
  1683 #undef  w_value               
  1684 #undef  w_index               
  1685 #undef  w_length              
  1686                          
  1687             /* The gadget driver may return an error here,
  1688             ┊* causing an immediate protocol stall. 
  1689             ┊*                
  1690             ┊* Else it must issue a response, either queueing a
  1691             ┊* response buffer for the DATA stage, or halting ep0
  1692             ┊* (causing a protocol stall, not a real halt).  A
  1693             ┊* zero length buffer means no DATA stage.
  1694             ┊*                
  1695             ┊* It's fine to issue that response after the setup()
  1696             ┊* call returns, and this IRQ was handled.
  1697             ┊*/               
  1698             udc->ep0_setup = 1;  
  1699             spin_unlock(&udc->lock);                
  1700             status = udc->driver->setup(&udc->gadget, &u.r); 这个函数可不是zero.c中那个setup函数,而是composite.c中的setup函数。下面我们具体分析之。

=======枚举过程的关键性函数。

在介绍该函数时,先介绍下至关重要的一个结构体,usb_request,该结构体就是数据发送和接受的载体,类似于网络中的skb.

  90 struct usb_request {              
  91     void            *buf;            //需要传输的数据都会在此填充。
  92     unsigned        length;          //buf长度
  93     dma_addr_t      dma;             //与dma操作相关的
  94                                   
  95     struct scatterlist  *sg;         //视乎是分散聚集表鄙人不是很明白。
  96     unsigned        num_sgs;         //如上
  97     unsigned        num_mapped_sgs;  //如上
  98                                   
  99     unsigned        stream_id:16;    //The stream id, when USB3.0 bulk streams are being used
 100     unsigned        no_interrupt:1;  //If true, hints that no completion irq is needed. Helpful sometimes with deep request queues that are handled directly by DMA controllers.
 101     unsigned        zero:1;          //是否是0包。     
 102     unsigned        short_not_ok:1;  //对于0包,判定该报是否允许其为错包
 103                                   
 104     void            (*complete)(struct usb_ep *ep,  //包发送完成后,会调用该函数。
 105                     struct usb_request *req);
 106     void            *context;         //很简单
 107     struct list_head    list;         //同一类型的usb_request    
 108                                   
 109     int         status;               //当前状态,Reports completion code, zero or a negative errno.
 110     unsigned        actual;          //实际传输包的长度。
 111 };  
1227 composite_setup(struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
1228 {         
1229     struct usb_composite_dev    *cdev = get_gadget_data(gadget);
1230     struct usb_request      *req = cdev->req; //所有的数据传输都是靠usb_request函数完成的。
1231     int             value = -EOPNOTSUPP;
1232     int             status = 0;
1233     u16             w_index = le16_to_cpu(ctrl->wIndex);
1234     u8              intf = w_index & 0xFF;
1235     u16             w_value = le16_to_cpu(ctrl->wValue);
1236     u16             w_length = le16_to_cpu(ctrl->wLength);
1237     struct usb_function     *f = NULL;
1238     u8              endp;
1239           
1240     /* partial re-init of the response message; the function or the
1241     ┊* gadget might need to intercept e.g. a control-OUT completion
1242     ┊* when we delegate to it.
1243     ┊*/   
1244     req->zero = 0;
1245     req->complete = composite_setup_complete;
1246     req->length = 0;
1247     gadget->ep0->driver_data = cdev;
1248           
1249     switch (ctrl->bRequest) {
1251     /* we handle all standard USB descriptors */
1252     case USB_REQ_GET_DESCRIPTOR:
1253         if (ctrl->bRequestType != USB_DIR_IN)
1254             goto unknown;
1255         switch (w_value >> 8) {
1256             
1257         case USB_DT_DEVICE:   //设备描述符
1258             cdev->desc.bNumConfigurations =
1259                 count_configs(cdev, USB_DT_DEVICE);
1260             cdev->desc.bMaxPacketSize0 =
1261                 cdev->gadget->ep0->maxpacket;
1262             if (gadget_is_superspeed(gadget)) {
1263                 if (gadget->speed >= USB_SPEED_SUPER) {
1264                     cdev->desc.bcdUSB = cpu_to_le16(0x0300);
1265                     cdev->desc.bMaxPacketSize0 = 9;
1266                 } else {
1267                     cdev->desc.bcdUSB = cpu_to_le16(0x0210);
1268                 }
1269             }
1270             
1271             value = min(w_length, (u16) sizeof cdev->desc);
1272             memcpy(req->buf, &cdev->desc, value);
1273             break;
1274         case USB_DT_DEVICE_QUALIFIER:   //the structure is used by USB client drivers to retrieve a USB-defined device qualifier descriptor.
1275             if (!gadget_is_dualspeed(gadget) ||
1276             ┊   gadget->speed >= USB_SPEED_SUPER)                                                                    
1277                 break;
1278             device_qual(cdev);
1279             value = min_t(int, w_length,
1280                 sizeof(struct usb_qualifier_descriptor));
1281             break;
1282         case USB_DT_OTHER_SPEED_CONFIG:
1283             if (!gadget_is_dualspeed(gadget) ||
1284             ┊   gadget->speed >= USB_SPEED_SUPER)
1285                 break;
1286             /* FALLTHROUGH */
1287         case USB_DT_CONFIG:  //配置描述符
1288             value = config_desc(cdev, w_value);
1289             if (value >= 0)
1290                 value = min(w_length, (u16) value);
1291             break;
1292         case USB_DT_STRING:  //字符串描述符
1293             value = get_string(cdev, req->buf,
1294                     w_index, w_value & 0xff);
1295             if (value >= 0)
1296                 value = min(w_length, (u16) value);
1297             break;
1298         case USB_DT_BOS:
1299             if (gadget_is_superspeed(gadget)) {
1300                 value = bos_desc(cdev);
1301                 value = min(w_length, (u16) value);
1302             }
1303             break;                                                                                                   
1304         }   
1305         break;
1306             1307     /* any number of configs can work */
1308     case USB_REQ_SET_CONFIGURATION:
1309         if (ctrl->bRequestType != 0)
1310             goto unknown;
1311         if (gadget_is_otg(gadget)) {
1312             if (gadget->a_hnp_support)
1313                 DBG(cdev, "HNP available
");
1314             else if (gadget->a_alt_hnp_support)
1315                 DBG(cdev, "HNP on another port
");
1316             else
1317                 VDBG(cdev, "HNP inactive
");
1318         } 
1319         spin_lock(&cdev->lock);
1320         value = set_config(cdev, ctrl, w_value);
1321         spin_unlock(&cdev->lock);
1322         break;
1323     case USB_REQ_GET_CONFIGURATION:
1324         if (ctrl->bRequestType != USB_DIR_IN)
1325             goto unknown;
1326         if (cdev->config)
1327             *(u8 *)req->buf = cdev->config->bConfigurationValue;
1328         else
1329             *(u8 *)req->buf = 0;
1330         value = min(w_length, (u16) 1);
1331         break;
1333     /* function drivers must handle get/set altsetting; if there's
1334     ┊* no get() method, we know only altsetting zero works.
1335     ┊*/    
1336     case USB_REQ_SET_INTERFACE:   //配置接口
1337         if (ctrl->bRequestType != USB_RECIP_INTERFACE)
1338             goto unknown;
1339         if (!cdev->config || intf >= MAX_CONFIG_INTERFACES)
1340             break;
1341         f = cdev->config->interface[intf];
1342         if (!f)
1343             break;
1344         if (w_value && !f->set_alt)
1345             break;
1346         value = f->set_alt(f, w_index, w_value); //设置当前接口为第一个接口0,在上文中有提及该函数的作用
1347         if (value == USB_GADGET_DELAYED_STATUS) {
1348             DBG(cdev,
1349"%s: interface %d (%s) requested delayed status
",
1350                     __func__, intf, f->name);
1351             cdev->delayed_status++;
1352             DBG(cdev, "delayed_status count %d
",
1353                     cdev->delayed_status);
1354         }  
1355         break;                                                                                                       
1356     case USB_REQ_GET_INTERFACE:
1357         if (ctrl->bRequestType != (USB_DIR_IN|USB_RECIP_INTERFACE))
1358             goto unknown;
1359         if (!cdev->config || intf >= MAX_CONFIG_INTERFACES)
1360             break;
1361         f = cdev->config->interface[intf];
1356     case USB_REQ_GET_INTERFACE:
1357         if (ctrl->bRequestType != (USB_DIR_IN|USB_RECIP_INTERFACE))
1358             goto unknown;
1359         if (!cdev->config || intf >= MAX_CONFIG_INTERFACES)
1360             break;
1361         f = cdev->config->interface[intf];
1362         if (!f)
1363             break;
1364         /* lots of interfaces only need altsetting zero... */
1365         value = f->get_alt ? f->get_alt(f, w_index) : 0;
1366         if (value < 0)
1367             break;
1368         *((u8 *)req->buf) = value;
1369         value = min(w_length, (u16) 1);
1370         break;
1371             
1372     /*      
1373     ┊* USB 3.0 additions:
1374     ┊* Function driver should handle get_status request. If such cb
1375     ┊* wasn't supplied we respond with default value = 0
1376     ┊* Note: function driver should supply such cb only for the first
1377     ┊* interface of the function
1378     ┊*/     
1379     case USB_REQ_GET_STATUS:
1380         if (!gadget_is_superspeed(gadget))
1381             goto unknown;                                                                                            
1382         if (ctrl->bRequestType != (USB_DIR_IN | USB_RECIP_INTERFACE))
1383             goto unknown;
1384         value = 2;  /* This is the length of the get_status reply */
1384         value = 2;  /* This is the length of the get_status reply */
1385         put_unaligned_le16(0, req->buf);
1386         if (!cdev->config || intf >= MAX_CONFIG_INTERFACES)
1387             break;
1388         f = cdev->config->interface[intf];
1389         if (!f)
1390             break;
1391         status = f->get_status ? f->get_status(f) : 0;
1392         if (status < 0)
1393             break;
1394         put_unaligned_le16(status & 0x0000ffff, req->buf);
1395         break;
1396     /*      
1397     ┊* Function drivers should handle SetFeature/ClearFeature
1398     ┊* (FUNCTION_SUSPEND) request. function_suspend cb should be supplied
1399     ┊* only for the first interface of the function
1400     ┊*/     
1401     case USB_REQ_CLEAR_FEATURE:
1402     case USB_REQ_SET_FEATURE:
1403         if (!gadget_is_superspeed(gadget))
1404             goto unknown;
1405         if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_INTERFACE))
1406             goto unknown;
1407         switch (w_value) {
1408         case USB_INTRF_FUNC_SUSPEND:
1409             if (!cdev->config || intf >= MAX_CONFIG_INTERFACES)                                                      
1410                 break;
1411             f = cdev->config->interface[intf];
1412             if (!f)
1409             if (!cdev->config || intf >= MAX_CONFIG_INTERFACES)
1410                 break;
1411             f = cdev->config->interface[intf];
1412             if (!f)
1413                 break;
1414             value = 0;
1415             if (f->func_suspend)
1416                 value = f->func_suspend(f, w_index >> 8);
1417             if (value < 0) {
1418                 ERROR(cdev,
1419                 ┊   ┊ "func_suspend() returned error %d
",
1420                 ┊   ┊ value);
1421                 value = 0;
1422             }
1423             break;
1424         }  
1425         break;
1426     default:
1427 unknown:     //倘若枚举过程中发送了无法识别的请求。
1428         VDBG(cdev,
1429             "non-core control req%02x.%02x v%04x i%04x l%d
",
1430             ctrl->bRequestType, ctrl->bRequest,
1431             w_value, w_index, w_length);
1432            
1433         /* functions always handle their interfaces and endpoints...
1434         ┊* punt other recipients (other, WUSB, ...) to the current                                                   
1435         ┊* configuration code.
1436         ┊* 
1437         ┊* REVISIT it could make sense to let the composite device
1435         ┊* configuration code.
1436         ┊*  
1437         ┊* REVISIT it could make sense to let the composite device
1438         ┊* take such requests too, if that's ever needed:  to work
1439         ┊* in config 0, etc.
1440         ┊*/ 
1441         switch (ctrl->bRequestType & USB_RECIP_MASK) {
1442         case USB_RECIP_INTERFACE:
1443             if (!cdev->config || intf >= MAX_CONFIG_INTERFACES)
1444                 break;
1445             f = cdev->config->interface[intf];
1446             break;
1447             
1448         case USB_RECIP_ENDPOINT:
1449             endp = ((w_index & 0x80) >> 3) | (w_index & 0x0f);
1450             list_for_each_entry(f, &cdev->config->functions, list) {
1451                 if (test_bit(endp, f->endpoints))
1452                     break;
1453             }
1454             if (&f->list == &cdev->config->functions)
1455                 f = NULL;
1456             break;
1457         }   
1458             
1459         if (f && f->setup)
1460             value = f->setup(f, ctrl);    //当时在分析该代码时候,很不明白function中为啥还设置setup函数,至少zero驱动中source sink只是简单的处理了下。                                                                                      
1461         else {
1462             struct usb_configuration    *c;
1463            
1464             c = cdev->config;
1465             if (!c)
1466                 goto done;
1467            
1468             /* try current config's setup */
1469             if (c->setup) {
1470                 value = c->setup(c, ctrl);
1471                 goto done;
1472             }
1473            
1474             /* try the only function in the current config */
1475             if (!list_is_singular(&c->functions))
1476                 goto done;
1477             f = list_first_entry(&c->functions, struct usb_function,
1478                     ┊   ┊list);
1479             if (f->setup)
1480                 value = f->setup(f, ctrl);
1481         }  
1482            
1483         goto done;
1484     }      
1485    //其实在每一个case语句里面,都对req进行了填充。并调用发送函数usb_eq_queue,做好执行回馈函数。        
1486     /* respond with data transfer before status phase? */                                                            
1487     if (value >= 0 && value != USB_GADGET_DELAYED_STATUS) {
1488         req->length = value;
1489         req->zero = value < w_length;
1490         value = usb_ep_queue(gadget->ep0, req, GFP_ATOMIC);//将封装好的数据,发送到udc指定的fifo中返回给主机,并调用回调函数composite_setup_complete
1491         if (value < 0) {
1492             DBG(cdev, "ep_queue --> %d
", value);
1493             req->status = 0;
1494             composite_setup_complete(gadget->ep0, req);//complete响应函数1495         }  
1496     } else if (value == USB_GADGET_DELAYED_STATUS && w_length != 0) {
1497         WARN(cdev,
1498             "%s: Delayed status not supported for w_length != 0",
1499             __func__);
1500     }      
1501            
1502 done:      
1503     /* device either stalls (value < 0) or reports success */
1504     if (value < 0) {
1505         printk("control error %d req%02x.%02x v%04x i%04x l%d
", value,
1506                 ctrl->bRequestType, ctrl->bRequest,
1507                 w_value, w_index, w_length);
1508     }      
1509     return value;
1510 } 
usb_ep_queue实际调用的是udc中实现的queue函数。
1116 static struct usb_ep_ops omap_ep_ops = {
1117     .enable     = omap_ep_enable,
1118     .disable    = omap_ep_disable,
1119                   
1120     .alloc_request  = omap_alloc_request,
1121     .free_request   = omap_free_request,
1122                   
1123     .queue      = omap_ep_queue,//该函数的作用主要是讲req写入
到对应的端点中的queue队列中去。
1002         list_add_tail(&req->queue, &ep->queue);

 下面好好分析下填充好了req后,是怎样通过omap_ep_queue函数发送的。

omap_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
 869 {                         
 870     struct omap_ep  *ep = container_of(_ep, struct omap_ep, ep);
 871     struct omap_req *req = container_of(_req, struct omap_req, req);
 872     struct omap_udc *udc; 
 873     unsigned long   flags;
 874     int     is_iso = 0;   
 875                           
 876     /* catch various bogus parameters */
 877     if (!_req || !req->req.complete || !req->req.buf  //毋庸置疑,为了代码的严谨性,对req进行相关判定是必然的。
 878             || !list_empty(&req->queue)) {
 879         DBG("%s, bad params
", __func__);                                                                           
 880         return -EINVAL;   
 881     }                     882     if (!_ep || (!ep->ep.desc && ep->bEndpointAddress)) {//这个时候端点描述符显得尤为重要。
 883         DBG("%s, bad ep
", __func__);
 884         return -EINVAL;   
 885     }                     
 886     if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
 887         if (req->req.length > ep->ep.maxpacket)
 888             return -EMSGSIZE;
 889         is_iso = 1;       
 890     }                     
 891                           
 892     /* this isn't bogus, but OMAP DMA isn't the only hardware to
 893     ┊* have a hard time with partial packet reads...  reject it.
 894     ┊*/                   
 895     if (use_dma           
 896             && ep->has_dma
 897             && ep->bEndpointAddress != 0
 898             && (ep->bEndpointAddress & USB_DIR_IN) == 0
 899             && (req->req.length % ep->ep.maxpacket) != 0) {
 900         DBG("%s, no partial packet OUT reads
", __func__);
 901         return -EMSGSIZE; 
 902     }                     
 903                           
 904     udc = ep->udc;       //获取ucd控制器实例,这个时候就是req和udc结合高潮来临的节奏。
 905     if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
 906         return -ESHUTDOWN;                                                                                           
 907                           
 908     if (use_dma && ep->has_dma)//dma支持吗?
 909         usb_gadget_map_request(&udc->gadget, &req->req,
909         usb_gadget_map_request(&udc->gadget, &req->req,
 910                 (ep->bEndpointAddress & USB_DIR_IN));
 911                          
 912     VDBG("%s queue req %p, len %d buf %p
",
 913         ep->ep.name, _req, _req->length, _req->buf);
 914                          
 915     spin_lock_irqsave(&udc->lock, flags);
 916                          
 917     req->req.status = -EINPROGRESS;
 918     req->req.actual = 0; 
 919                          
 920     /* maybe kickstart non-iso i/o queues */
 921     if (is_iso) {        
 922         u16 w;           
 923                          
 924         w = omap_readw(UDC_IRQ_EN);
 925         w |= UDC_SOF_IE; 
 926         omap_writew(w, UDC_IRQ_EN);
 927     } else if (list_empty(&ep->queue) && !ep->stopped && !ep->ackwait) {
 928         int is_in;       
 929                          
 930         if (ep->bEndpointAddress == 0) {  //若是控制端点0
 931             if (!udc->ep0_pending || !list_empty(&ep->queue)) {
 932                 spin_unlock_irqrestore(&udc->lock, flags);
 933                 return -EL2HLT;
 934             }                                                                                                        
 935                          
 936             /* empty DATA stage? */
 937             is_in = udc->ep0_in;
938             if (!req->req.length) {  //对于端点0,并且或者req数据长度为0,显然,不用进行回复,直接调用done函数表示完成传输。
 939                          
 940                 /* chip became CONFIGURED or ADDRESSED
 941                 ┊* earlier; drivers may already have queued
 942                 ┊* requests to non-control endpoints
 943                 ┊*/      
 944                 if (udc->ep0_set_config) {
 945                     u16 irq_en = omap_readw(UDC_IRQ_EN);
 946                          
 947                     irq_en |= UDC_DS_CHG_IE | UDC_EP0_IE;
 948                     if (!udc->ep0_reset_config)
 949                         irq_en |= UDC_EPN_RX_IE
 950                             | UDC_EPN_TX_IE;
 951                     omap_writew(irq_en, UDC_IRQ_EN); //是能udc中断
 952                 }        
 953                          
 954                 /* STATUS for zero length DATA stages is
 955                 ┊* always an IN ... even for IN transfers,
 956                 ┊* a weird case which seem to stall OMAP.
 957                 ┊*/      
 958                 omap_writew(UDC_EP_SEL | UDC_EP_DIR,
 959                         UDC_EP_NUM);
 960                 omap_writew(UDC_CLR_EP, UDC_CTRL);
 961                 omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);//设置fifo使能
 962                 omap_writew(UDC_EP_DIR, UDC_EP_NUM);//配置端点放向和号
 963                                                                                                                      
 964                 /* cleanup */
 965                 udc->ep0_pending = 0; //将控制端点0设置为非挂起状态,即空闲状态。
 966                 done(ep, req, 0);967                 req = NULL;
 968                           
 969             /* non-empty DATA stage */
 970             } else if (is_in) {
 971                 omap_writew(UDC_EP_SEL | UDC_EP_DIR,
 972                         UDC_EP_NUM);
 973             } else {      
 974                 if (udc->ep0_setup) //若端点处理建立状态则说明该端点中数据还没发送完成,即需要发送请求。则将req加入控制器队列queue中。
 975                     goto irq_wait;
 976                 omap_writew(UDC_EP_SEL, UDC_EP_NUM);
 977             }             
 978         } else {          
 979             is_in = ep->bEndpointAddress & USB_DIR_IN;
 980             if (!ep->has_dma)
 981                 use_ep(ep, UDC_EP_SEL);
 982             /* if ISO: SOF IRQs must be enabled/disabled! */
 983         }                 
 984                           
 985         if (ep->has_dma)  
 986             (is_in ? next_in_dma : next_out_dma)(ep, req);
 987         else if (req) {   
 988             if ((is_in ? write_fifo : read_fifo)(ep, req) == 1) //若是in则调用write_fifo,将req写入队列中,若是out,则调用read函数,并释放req
 989                 req = NULL;                                                                                         
 990             deselect_ep();
 991             if (!is_in) { 992                 omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
 993                 ep->ackwait = 1 + ep->double_buf;
 994             }            
 995             /* IN: 6 wait states before it'll tx */
 996         }                
 997     }                    
 998                          
 999 irq_wait:                
1000     /* irq handler advances the queue */
1001     if (req != NULL)     
1002         list_add_tail(&req->queue, &ep->queue);//将usb加入队列中,等待中断处理,处理完后就调用中断回调函数,done
1003     spin_unlock_irqrestore(&udc->lock, flags);
1004                          
1005     return 0;            
1006 } 

自此,枚举过程已经讲完,如果成功的话,会返回0值,小于0值,那就得调用composite_setup_complete,表明枚举过程失败了。

 讲完枚举过程,这里还讲下usb_request的传输过程。当时开发项目时,主要用到loopback功能,主要是对ep_in和out的包进行拦截,后并进行处理。

looback功能很按照字面意思很简单,就是普通的回复,即收到的req转给发出的req。

host和gadge之间的通信主要依靠中断,在gadget端,进行数据通信时,收到bulk处理指令后都会调用各自端点实现的complete函数,对于loopback来说,关键的处理函数如下:

此处针对omap_udc.c控制器简单的介绍下:

omap_udc_pio_irq-->write_fifo/read_fifo--->done->req.complete; //看起来很简单,其实是花费笔者较长时间才弄明白的。

246 static void loopback_complete(struct usb_ep *ep, struct usb_request *req)
247 {  
248     struct f_loopback   *loop = ep->driver_data;
249     struct usb_composite_dev *cdev = loop->function.config->cdev;
250     int         status = req->status;
251    
252     switch (status) {
253    
254     case 0:             /* normal completion? */
255         if (ep == loop->out_ep) { //如果host端发送过来的out_ep,则需要将包转发给ep_in端点。
256             /* loop this OUT packet back IN to the host */
257             req->zero = (req->actual < req->length);
258             req->length = req->actual;
259             status = usb_ep_queue(loop->in_ep, req, GFP_ATOMIC);//转发很简单,直接把收到的转到另外一个端点即可,对于需要通过loopback功能
//将req->buf中的包进行某些处理的,可以增加字符操作接口,对buf进行处理后再发送
//给对应得端点。
260 if (status == 0) 261 return; 262 263 /* "should never get here" */ 264 ERROR(cdev, "can't loop %s to %s: %d ", 265 ep->name, loop->in_ep->name, 266 status); 267 } 268 269 /* queue the buffer for some later OUT packet */ 270 req->length = buflen; 271 status = usb_ep_queue(loop->out_ep, req, GFP_ATOMIC); //很显然,如果是in_ep端点的话,需要将out_ep中包发出。 272 if (status == 0) 273 return; 274 275 /* "should never get here" */ 276 /* FALLTHROUGH */ 277 278 default: 279 ERROR(cdev, "%s loop complete --> %d, %d/%d ", ep->name, 280 status, req->actual, req->length); 281 /* FALLTHROUGH */ 282 283 /* NOTE: since this driver doesn't maintain an explicit record 284 ┊* of requests it submitted (just maintains qlen count), we 285 ┊* rely on the hardware driver to clean up on disconnect or 286 ┊* endpoint disable. 287 ┊*/ 288 case -ECONNABORTED: /* hardware forced ep reset */ 289 case -ECONNRESET: /* request dequeued */ 290 case -ESHUTDOWN: /* disconnect from host */ 291 free_ep_req(ep, req); 292 return; 293 } 294 }
原文地址:https://www.cnblogs.com/haoxing990/p/8860419.html