浅析JVM类加载机制

浅析JVM类加载机制

浅析类加载机制

类加载器简单来说是用来加载 Java 类到 Java 虚拟机中的。Java 虚拟机使用 Java 类的方式如下:Java 源程序(.java 文件)在经过 Java 编译器编译之后就被转换成 Java 字节代码(.class 文件)。类加载器负责读取 Java 字节代码,并转换成 java.lang.Class类的一个实例。每个这样的实例用来表示一个 Java 类。通过此实例的 newInstance()方法就可以创建出该类的一个对象。

想要真正深入理解Java类加载机制,就要弄懂三个问题:类什么时候加载、类加载的过程是什么、用什么加载。所以本文分为三部分分别介绍Java类加载的时机、类加载的过程、加载器。

如下图所示,JVM类加载机制分为五个部分:加载,验证,准备,解析,初始化,下面我们就分别来看一下这五个过程。

加载

加载是类加载过程中的一个阶段,这个阶段会在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的入口。注意这里不一定非得要从一个Class文件获取,这里既可以从ZIP包中读取(比如从jar包和war包中读取),也可以在运行时计算生成(动态代理),也可以由其它文件生成(比如将JSP文件转换成对应的Class类)。

验证

这一阶段的主要目的是为了确保Class文件的字节流中包含的信息是否符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。

准备

准备阶段是正式为类变量分配内存并设置类变量的初始值阶段,即在方法区中分配这些变量所使用的内存空间。注意这里所说的初始值概念,比如一个类变量定义为:

1
public static int v = 8080;

实际上变量v在准备阶段过后的初始值为0而不是8080,将v赋值为8080的putstatic指令是程序被编译后,存放于类构造器<client>方法之中,这里我们后面会解释。
但是注意如果声明为:

1
public static final int v = 8080;

在编译阶段会为v生成ConstantValue属性,在准备阶段虚拟机会根据ConstantValue属性将v赋值为8080。

解析

解析阶段是指虚拟机将常量池中的符号引用替换为直接引用的过程。符号引用就是class文件中的:

  • CONSTANT_Class_info
  • CONSTANT_Field_info
  • CONSTANT_Method_info

等类型的常量。

下面我们解释一下符号引用和直接引用的概念:

  • 符号引用与虚拟机实现的布局无关,引用的目标并不一定要已经加载到内存中。各种虚拟机实现的内存布局可以各不相同,但是它们能接受的符号引用必须是一致的,因为符号引用的字面量形式明确定义在Java虚拟机规范的Class文件格式中。
  • 直接引用可以是指向目标的指针,相对偏移量或是一个能间接定位到目标的句柄。如果有了直接引用,那引用的目标必定已经在内存中存在。

初始化

初始化阶段是类加载最后一个阶段,前面的类加载阶段之后,除了在加载阶段可以自定义类加载器以外,其它操作都由JVM主导。到了初始阶段,才开始真正执行类中定义的Java程序代码。

初始化阶段是执行类构造器<client>方法的过程。<client>方法是由编译器自动收集类中的类变量的赋值操作和静态语句块中的语句合并而成的。虚拟机会保证<client>方法执行之前,父类的<client>方法已经执行完毕。p.s: 如果一个类中没有对静态变量赋值也没有静态语句块,那么编译器可以不为这个类生成<client>()方法。

注意以下几种情况不会执行类初始化:

  • 通过子类引用父类的静态字段,只会触发父类的初始化,而不会触发子类的初始化。
  • 定义对象数组,不会触发该类的初始化。
  • 常量在编译期间会存入调用类的常量池中,本质上并没有直接引用定义常量的类,不会触发定义常量所在的类。
  • 通过类名获取Class对象,不会触发类的初始化。
  • 通过Class.forName加载指定类时,如果指定参数initialize为false时,也不会触发类初始化,其实这个参数是告诉虚拟机,是否要对类进行初始化。
  • 通过ClassLoader默认的loadClass方法,也不会触发初始化动作。

类加载器

虚拟机设计团队把加载动作放到JVM外部实现,以便让应用程序决定如何获取所需的类,JVM提供了3种类加载器:

  • 启动类加载器(Bootstrap ClassLoader):负责加载 JAVA_HOMElib 目录中的,或通过-Xbootclasspath参数指定路径中的,且被虚拟机认可(按文件名识别,如rt.jar)的类。
  • 扩展类加载器(Extension ClassLoader):负责加载 JAVA_HOMElibext 目录中的,或通过java.ext.dirs系统变量指定路径中的类库。
  • 应用程序类加载器(Application ClassLoader):负责加载用户路径(classpath)上的类库。

JVM通过双亲委派模型进行类的加载,当然我们也可以通过继承java.lang.ClassLoader实现自定义的类加载器。

当一个类加载器收到类加载任务,会先交给其父类加载器去完成,因此最终加载任务都会传递到顶层的启动类加载器,只有当父类加载器无法完成加载任务时,才会尝试执行加载任务。

采用双亲委派的一个好处是比如加载位于rt.jar包中的类java.lang.Object,不管是哪个加载器加载这个类,最终都是委托给顶层的启动类加载器进行加载,这样就保证了使用不同的类加载器最终得到的都是同样一个Object对象。

二、类加载器与双亲委派模型

      类加载器

     (1) Bootstrap ClassLoader : 将存放于<JAVA_HOME>lib目录中的,或者被-Xbootclasspath参数所指定的路径中的,并且是虚拟机识别的(仅按照文件名识别,如 rt.jar 名字不符合的类库即使放在lib目录中也不会被加载)类库加载到虚拟机内存中。启动类加载器无法被Java程序直接引用

     (2) Extension ClassLoader : 将<JAVA_HOME>libext目录下的,或者被java.ext.dirs系统变量所指定的路径中的所有类库加载。开发者可以直接使用扩展类加载器。

     (3) Application ClassLoader : 负责加载用户类路径(ClassPath)上所指定的类库,开发者可直接使用。

     

双亲委派模型

 

工作过程:如果一个类加载器接收到了类加载的请求,它首先把这个请求委托给他的父类加载器去完成,每个层次的类加载器都是如此,因此所有的加载请求都应该传送到顶层的启动类加载器中,只有当父加载器反馈自己无法完成这个加载请求(它在搜索范围中没有找到所需的类)时,子加载器才会尝试自己去加载。

     好处:java类随着它的类加载器一起具备了一种带有优先级的层次关系。例如类java.lang.Object,它存放在rt.jar中,无论哪个类加载器要加载这个类,最终都会委派给启动类加载器进行加载,因此Object类在程序的各种类加载器环境中都是同一个类。相反,如果用户自己写了一个名为java.lang.Object的类,并放在程序的Classpath中,那系统中将会出现多个不同的Object类,java类型体系中最基础的行为也无法保证,应用程序也会变得一片混乱。

 

       java.lang.ClassLoader中几个最重要的方法:

复制代码
//加载指定名称(包括包名)的二进制类型,供用户调用的接口
public Class<?> loadClass(String name);
//加载指定名称(包括包名)的二进制类型,同时指定是否解析(但是,这里的resolve参数不一定真正能达到解析的效果),供继承用
protected synchronized Class<?> loadClass(String name, boolean resolve);
protected Class<?> findClass(String name)
//定义类型,一般在findClass方法中读取到对应字节码后调用,可以看出不可继承(说明:JVM已经实现了对应的具体功能,解析对应的字节码,产生对应的内部数据结构放置到方法区,所以无需覆写,直接调用就可以了)
protected final Class<?> defineClass(String name, byte[] b, int off, int len) throws ClassFormatError{}
复制代码

如下是实现双亲委派模型的主要代码:

在有些情境中可能会出现要我们自己来实现一个类加载器的需求,由于这里涉及的内容比较广泛,我想以后单独写一篇文章来讲述,不过这里我们还是稍微来看一下。我们直接看一下jdk中的ClassLoader的源码实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
protected synchronized Class<?> loadClass(String name, boolean resolve)
        throws ClassNotFoundException {
    // First, check if the class has already been loaded
    Class c = findLoadedClass(name);
    if (c == null) {
        try {
            if (parent != null) {
                c = parent.loadClass(name, false);
            } else {
                c = findBootstrapClass0(name);
            }
        } catch (ClassNotFoundException e) {
            // If still not found, then invoke findClass in order
            // to find the class.
            c = findClass(name);
        }
    }
    if (resolve) {
        resolveClass(c);
    }
    return c;
}
  • 首先通过Class c = findLoadedClass(name);判断一个类是否已经被加载过。
  • 如果没有被加载过执行if (c == null)中的程序,遵循双亲委派的模型,首先会通过递归从父加载器开始找,直到父类加载器是Bootstrap ClassLoader为止。
  • 最后根据resolve的值,判断这个class是否需要解析。

而上面的findClass()的实现如下,直接抛出一个异常,并且方法是protected,很明显这是留给我们开发者自己去实现的,这里我们以后我们单独写一篇文章来讲一下如何重写findClass方法来实现我们自己的类加载器。

1
2
3
protected Class<?> findClass(String name) throws ClassNotFoundException {
    throw new ClassNotFoundException(name);
}

References


---------------------
作者:遥看那片海
来源:CSDN
原文:https://blog.csdn.net/w760079528/article/details/77845267
版权声明:本文为博主原创文章,转载请附上博文链接!

原文地址:https://www.cnblogs.com/handsome1013/p/10573242.html