iOS 加锁的方式

iOS多线程编程中,经常碰到多个线程访问共同的一个资源,在线程相互交互的情况下,需要一些同步措施,来保证线程之间交互的时候是安全的。下面我们一起看一下学一下iOS的几种常用的加锁方式,希望对大家有所帮助!!!

  1. @synchronized
  2. NSLock对象锁
  3. NSRecursiveLock递归锁
  4. NSConditionLock条件锁
  5. dispatch_semaphore 信号量实现加锁(也就是GCD)
  6. OSSpinLock 与 os_unfair_lock
  7. pthread_mutex

介绍与使用

1.@synchronized

@synchronized关键字加锁,互斥锁,性能较差不推荐在项目中使用。

@synchronized(这里添加一个OC对象,一般使用self) {
       这里写要加锁的代码
  }
注意点
1.加锁的代码要尽量少 2.添加的OC对象必须在多个线程中都是同一个对象 3.它的优点是不需要显式的创建锁对象,便可以实现锁的机制。 4. @synchronized块会隐式的添加异常处理例程来保护代码,该处理例程会在异常抛出的时候就会自动  的释放互斥锁。如果不想让隐式的异常处理例程带来额外的开销,你可以考虑使用锁对象。

下面我们以一个最经典的例子:卖票

//设置票的数量为5
    _tickets = 5;
    
    //线程1
    dispatch_async(self.concurrentQueue, ^{
        [self saleTickets];
    });
    
    //线程2
    dispatch_async(self.concurrentQueue, ^{
        [self saleTickets];
    });
 
- (void)saleTickets
{
    while (1) {
        @synchronized(self) {
            [NSThread sleepForTimeInterval:1];
            if (_tickets > 0) {
                _tickets--;
                NSLog(@"剩余票数= %ld, Thread:%@",_tickets,[NSThread currentThread]);
            } else {
                NSLog(@"票卖完了  Thread:%@",[NSThread currentThread]);
                break;
            }
        }
    }
}

2.NSLock

基本所有锁的接口都是通过NSLocking协议定义的,定义了lock和unlock方法,通过这些方法获取和释放锁。NSLock是对mutex普通锁的封装

下面还是以卖票的例子讲述一下。

//设置票的数量为5
    _tickets = 5;
    
    //创建锁
    _mutexLock = [[NSLock alloc] init];
    
    //线程1
    dispatch_async(self.concurrentQueue, ^{
        [self saleTickets];
    });
    
    //线程2
    dispatch_async(self.concurrentQueue, ^{
        [self saleTickets];
    });
 
- (void)saleTickets
{
 
    while (1) {
        [NSThread sleepForTimeInterval:1];
        //加锁
        [_mutexLock lock];
        if (_tickets > 0) {
            _tickets--;
            NSLog(@"剩余票数= %ld, Thread:%@",_tickets,[NSThread currentThread]);        
        } else {
            NSLog(@"票卖完了  Thread:%@",[NSThread currentThread]);
            break;
        }
        //解锁
        [_mutexLock unlock];
    }
}

3.NSRecursiveLock递归锁

使用锁比较容易犯的错误是在递归或者循环中造成死锁。

如下代码锁会被多次lock,造成自己被阻塞。

//创建锁
    _mutexLock = [[NSLock alloc]init];
  
    //线程1
    dispatch_async(self.concurrentQueue, ^{
        static void(^TestMethod)(int);
        TestMethod = ^(int value)
        {
            [_mutexLock lock];
            if (value > 0)
            {
                [NSThread sleepForTimeInterval:1];
                TestMethod(value--);
            }
            [_mutexLock unlock];
        };
        
        TestMethod(5);
    });

如果把这个NSLock换成NSRecursiveLock,就可以解决问题。

NSRecursiveLock类定义的锁,可以在同一线程多次lock,不会造成死锁。

//创建锁
    _rsLock = [[NSRecursiveLock alloc] init];
    
   //线程1
    dispatch_async(self.concurrentQueue, ^{
        static void(^TestMethod)(int);
        TestMethod = ^(int value)
        {
            [_rsLock lock];
            if (value > 0)
            {
                [NSThread sleepForTimeInterval:1];
                TestMethod(value--);
            }
            [_rsLock unlock];
        };
        
        TestMethod(5);
    });

4.NSConditionLock条件锁

NSMutableArray *products = [NSMutableArray array];  
NSInteger HAS_DATA = 1;  
NSInteger NO_DATA = 0;  
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{  
    while (1) {  
        [lock lockWhenCondition:NO_DATA];  
        [products addObject:[[NSObject alloc] init]];  
        NSLog(@"produce a product,总量:%zi",products.count);  
        [lock unlockWithCondition:HAS_DATA];  
        sleep(1);  
    }  
});  
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{  
    while (1) {  
       NSLog(@"wait for product");  
        [lock lockWhenCondition:HAS_DATA];  
       [products removeObjectAtIndex:0];  
       NSLog(@"custome a product");  
       [lock unlockWithCondition:NO_DATA];  
    }  
});

在线程1中的加锁使用了lock,所以是不要条件的,也就锁住了。但在unlock的使用整型条件,它可以开启其他线程中正在等待钥匙的临界池,当线程1循环到一次的时候,打开了线程2的阻塞。

NSCoditionLock中lock,lockWhenCondition:与unlock,unlockWithCondition:是可以随意组合的,具体使用根据需求来区分。

NSCoditionLock 是对NSCodition的进一步封装,可以设置具体的条件值,而NSCodition是对mutex和cond的封装---看本篇博客7.3 条件锁

5.dispatch_semaphore信号量实现加锁

dispatch_semaphore_t signal = dispatch_semaphore_create(1);  
dispatch_time_t overTime = dispatch_time(DISPATCH_TIME_NOW, 3 * NSEC_PER_SEC);  
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{  
    dispatch_semaphore_wait(signal, overTime);  
            NSLog(@"需要线程同步的操作1 开始");  
            sleep(2);  
            NSLog(@"需要线程同步的操作1 结束");  
        dispatch_semaphore_signal(signal);  
});  
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{  
        sleep(1);  
        dispatch_semaphore_wait(signal, overTime);  
            NSLog(@"需要线程同步的操作2");  
        dispatch_semaphore_signal(signal);  
});  

dispatch_semaphore是GCD用于同步的方式,与之相关的共有三个函数,dispatch_semaphore_wait,dispatch_semaphore_signal,dispatch_semaphore_create。

(1)dispatch_semaphore_create的声明为:

dispatch_semaphore_t dispatch_semaphore_create(long value);

传入的参数是long类型,输出一个dispatch_semaphore_t类型值为Value的信号量(value传入值不能小于0,否则会报错NULL)

(2)dispatch_semaphore_signal声明为下面:

long dispatch_semaphore_signal(dispatch_semaphore_t dsema); 

这个方法会使dsema加1;

(3)dispatch_semaphore_wait的声明为下面:

long dispatch_semaphore_wait(dispatch_semaphore_t dsema, dispatch_time_t timeout);

这个方法会使dsema减1。

整个逻辑如下:

如果dsema信号量值为大于0,该函数所在线程就会继续执行下面的语句,并将信号量的减去1;如果dsema为0时,函数就会阻塞当前的线程,如果等待的期间发现dsema的值被dispatch_semaphore_signal加1了,并且该函数得到了信号量,那么继续向下执行,并将信号量减1,如果等待期间没有获得信号量或者值一直为0,那么等到timeout,所处的线程也会自动执行下面的代码。

dispatch_semaphore,当信号量为1时,可以作为锁使用。如果没有出现等待的情况,它的性能比pthread_mutex还要高,当如果有等待情况的时候,性能就会下降很多,相比OSSpinLock(暂不讲解),它的优势在于等待的时侯不会消耗CPU资源。

针对上面代码,发现如果超时时间overTime>2,可完成同步操作,反之,在线程1还没有执行完的情况下,此时超时了,将自动执行下面的代码。

上面代码执行结果:

2018-09-18 15:40:52.324 SafeMultiThread[35945:579032] 需要线程同步的操作1 开始  
2018-09-18 15:40:52.325 SafeMultiThread[35945:579032] 需要线程同步的操作1 结束  
2018-09-18 15:40:52.326 SafeMultiThread[35945:579033] 需要线程同步的操作2  

如果将overTime<2s的时候,执行为

2018-09-18 15:40:52.049 SafeMultiThread[30834:434334] 需要线程同步的操作1 开始  
2018-09-18 15:40:52.554 SafeMultiThread[30834:434332] 需要线程同步的操作2  
2018-09-18 15:40:52.054 SafeMultiThread[30834:434334] 需要线程同步的操作1 结束  

6.OSSpinLock自旋锁与os_unfair_lock

6.1   OSSpinLock

OSSpinLock叫做“自旋锁”,自旋锁的线程会处于忙等(busy-wait)状态,一直占用着CPU资源

但是目前是不再安全了,在iOS 10之后弃用啦,如果等待锁的线程优先级较高,它会一直占用着CPU资源,优先级低的线程就无法释放锁。

在使用的过程中需要导入头文件#import <libkern/OSAtomic.h>

//初始化
OSSpinLock lock = OS_SPINLOCK_INIT;
//尝试加锁(如果需要等待就不加锁,直接返回false;如果不需要等待就加锁,返回True)
bool result = OSSpinLockTry(&lock);
//加锁
OSSpinLockLock(&lock);
//解锁
OSSpinLockUnlock(&lock)

6.2 os_unfair_lock互斥锁

os_unfair_lock用于取代不安全的OSSpinLock,从iOS10开始才支持。从底层调用看,等待os_unfair_lock锁的线程会处于休眠状态,并非忙等

os_unfair_lock需要导入头文件#import<os/lock.h>

    //初始化
    os_unfair_lock lock = OS_UNFAIR_LOCK_INIT;
    //尝试加锁
    os_unfair_lock_trylock(&lock);
    //加锁
    os_unfair_lock_lock(&lock);
    //解锁
    os_unfair_lock_unlock(&lock);

7.pthread_mutex

mutex叫做“互斥锁”,等待锁的线程处于休眠状态

需要导入头文件#import <pthread.h>

7.1  

    //初始化锁的属性
    pthread_mutexattr_t attr;
    pthread_mutexattr_init(&attr);
    pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL);
    
    //初始化锁
    pthread_mutex_t mutex;
    pthread_mutex_init(&mutex, &attr);
    
    //尝试加锁
    pthread_mutex_trylock(&mutex);
    
    //加锁
    pthread_mutex_lock(&mutex);
    
    //解锁
    pthread_mutex_unlock(&mutex);
    
    //销毁相关资源 --pthread_mutex在对象类释放的时候要销毁,其他锁无此情况
    pthread_mutexattr_destroy(&attr);
    pthread_mutex_destroy(&mutex);

7.2 pthread_mutex-递归锁

     //初始化锁的属性
    pthread_mutexattr_t attr;
    pthread_mutexattr_t_int(&attr);
    pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);//递归锁
    
    //初始化锁
    pthread_mutex_t mutex;
    pthread_mutex_init(&mutex, &attr);

7.3 pthread_mutex-条件

#import "MutexDemo3.h"

#import <pthread.h>

@interface MutexDemo3()
@property (assign, nonatomic) pthread_mutex_t mutex;
@property (assign, nonatomic) pthread_cond_t cond;
@property (strong, nonatomic) NSMutableArray *data;
@end

@implementation MutexDemo3

- (instancetype)init
{
    if (self = [super init]) {
        // 初始化属性
        pthread_mutexattr_t attr;
        pthread_mutexattr_init(&attr);
        pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
        // 初始化锁
        pthread_mutex_init(&_mutex, &attr);
        // 销毁属性
        pthread_mutexattr_destroy(&attr);
        
        // 初始化条件
        pthread_cond_init(&_cond, NULL);
        
        self.data = [NSMutableArray array];
    }
    return self;
}

- (void)otherTest
{
    [[[NSThread alloc] initWithTarget:self selector:@selector(__remove) object:nil] start];
    
    [[[NSThread alloc] initWithTarget:self selector:@selector(__add) object:nil] start];
}

// 生产者-消费者模式

// 线程1
// 删除数组中的元素
- (void)__remove
{
    pthread_mutex_lock(&_mutex);
    NSLog(@"__remove - begin");
    
    if (self.data.count == 0) {
        // 等待
        pthread_cond_wait(&_cond, &_mutex);
    }
    
    [self.data removeLastObject];
    NSLog(@"删除了元素");
    
    pthread_mutex_unlock(&_mutex);
}

// 线程2
// 往数组中添加元素
- (void)__add
{
    pthread_mutex_lock(&_mutex);
    
    sleep(1);
    
    [self.data addObject:@"Test"];
    NSLog(@"添加了元素");
    
    // 信号
    pthread_cond_signal(&_cond);
    // 广播
//    pthread_cond_broadcast(&_cond);
    
    pthread_mutex_unlock(&_mutex);
}

- (void)dealloc
{
    pthread_mutex_destroy(&_mutex);
    pthread_cond_destroy(&_cond);
}

@end

补充:自旋锁、互斥锁比较

1. 什么情况下使用自旋锁比较划算?(OSSpinLock,但被os_unfair_lock取代,但是os_unfair_lock不是自旋锁)

  • 预计线程等待锁的时间很短
  • 加锁的代码(临界区)经常被调用,但竞争情况很少发生
  • CPU资源不紧张
  • 多核处理器

2. 什么情况下使用互斥锁比较划算?(pthread_mutex, NSLock等)

  • 预计线程等待锁的时间较长
  • 单核处理器
  • 临界区有IO操作
  • 临界区代码复杂或者循环量大
  • 临界区竞争非常激烈

以上就是自己在开发中所经常使用到的加锁方式,希望对大家有所帮助!!!

原文地址:https://www.cnblogs.com/guohai-stronger/p/9663459.html