操作系统educative版本-笔记1

Qustions

  1. How can we summarize a Process?

    At any instant in time, we can summarize a process by taking an inventory of the different pieces of the system it accesses or affects during the course of its execution.

  2. Tell me about the elements that constitute a Process?

    • Memory:Instructions lie in memory and the data that a programme reads or writes sits in memory too.
    • Registers:During the execution of a program , instuctions reads or writes some registers.
      • PC(Program Counter) tells us which instructions of the program will be execute next.
      • Stack Pointer and Frame Pointer are used to manage the stack for function parameters,local variables and return addresses.
    • Persistence Storage Device:the I/O imformation might include a list of files the program currently open.
  3. Do you know some primary APIs of Process that are available in any operating system?

    • Create
    • Destory:kill the process forcefully
    • Wait: wait to stop the process
    • Suspend/Resume
    • Status
  4. The snippet below shows the data structure of Process and the define of process states , it also shows the register context which is useful for schduling the Process.

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {
  int eip;
  int esp;
  int ebx;
  int ecx;
  int edx;
  int esi;
  int edi;
  int ebp;
};
// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
                  RUNNABLE, RUNNING, ZOMBIE };
// the information xv6 tracks about each process
// including its register context and state
struct proc {
  char *mem;                  // Start of process memory
  uint sz;                    // Size of process memory
  char *kstack;               // Bottom of kernel stack
                              // for this process
  enum proc_state state;      // Process state
  int pid;                    // Process ID
  struct proc *parent;        // Parent process
  void *chan;                 // If !zero, sleeping on chan
  int killed;                 // If !zero, has been killed
  struct file *ofile[NOFILE]; // Open files
  struct inode *cwd;          // Current directory
  struct context context;     // Switch here to run process
  struct trapframe *tf;       // Trap frame for the
                              // current interrupt
};

Exercise

Here is the code provided by the course,we can use diffrent options to generate some processes and caculate the cpu and io utilazition,for example,we can use '-l 5:100 5:100' to generate two processes, each of which has 5 instructions use CPU only.

#! /usr/bin/env python

import sys
from optparse import OptionParser
import random

# process switch behavior
SCHED_SWITCH_ON_IO = 'SWITCH_ON_IO'
SCHED_SWITCH_ON_END = 'SWITCH_ON_END'

# io finished behavior
IO_RUN_LATER = 'IO_RUN_LATER'
IO_RUN_IMMEDIATE = 'IO_RUN_IMMEDIATE'

# process states
STATE_RUNNING = 'RUNNING'
STATE_READY = 'READY'
STATE_DONE = 'DONE'
STATE_WAIT = 'WAITING'

# members of process structure
PROC_CODE = 'code_'
PROC_PC = 'pc_'
PROC_ID = 'pid_'
PROC_STATE = 'proc_state_'

# things a process can do
DO_COMPUTE = 'cpu'
DO_IO = 'io'


class scheduler:
    def __init__(self, process_switch_behavior, io_done_behavior, io_length):
        # keep set of instructions for each of the processes
        self.proc_info = {}
        self.process_switch_behavior = process_switch_behavior
        self.io_done_behavior = io_done_behavior
        self.io_length = io_length
        return

    def new_process(self):
        proc_id = len(self.proc_info)
        self.proc_info[proc_id] = {}
        self.proc_info[proc_id][PROC_PC] = 0
        self.proc_info[proc_id][PROC_ID] = proc_id
        self.proc_info[proc_id][PROC_CODE] = []
        self.proc_info[proc_id][PROC_STATE] = STATE_READY
        return proc_id

    def load_file(self, progfile):
        fd = open(progfile)
        proc_id = self.new_process()
        
        for line in fd:
            tmp = line.split()
            if len(tmp) == 0:
                continue
            opcode = tmp[0]
            if opcode == 'compute':
                assert(len(tmp) == 2)
                for i in range(int(tmp[1])):
                    self.proc_info[proc_id][PROC_CODE].append(DO_COMPUTE)
            elif opcode == 'io':
                assert(len(tmp) == 1)
                self.proc_info[proc_id][PROC_CODE].append(DO_IO)
        fd.close()
        return

    def load(self, program_description):
        proc_id = self.new_process()
        tmp = program_description.split(':')
        if len(tmp) != 2:
            print 'Bad description (%s): Must be number <x:y>' % program_description
            print '  where X is the number of instructions'
            print '  and Y is the percent change that an instruction is CPU not IO'
            exit(1)

        num_instructions, chance_cpu = int(tmp[0]), float(tmp[1])/100.0
        for i in range(num_instructions):
            if random.random() < chance_cpu:
                self.proc_info[proc_id][PROC_CODE].append(DO_COMPUTE)
            else:
                self.proc_info[proc_id][PROC_CODE].append(DO_IO)
        return

    def move_to_ready(self, expected, pid=-1):
        if pid == -1:
            pid = self.curr_proc
        assert(self.proc_info[pid][PROC_STATE] == expected)
        self.proc_info[pid][PROC_STATE] = STATE_READY
        return

    def move_to_wait(self, expected):
        assert(self.proc_info[self.curr_proc][PROC_STATE] == expected)
        self.proc_info[self.curr_proc][PROC_STATE] = STATE_WAIT
        return

    def move_to_running(self, expected):
        assert(self.proc_info[self.curr_proc][PROC_STATE] == expected)
        self.proc_info[self.curr_proc][PROC_STATE] = STATE_RUNNING
        return

    def move_to_done(self, expected):
        assert(self.proc_info[self.curr_proc][PROC_STATE] == expected)
        self.proc_info[self.curr_proc][PROC_STATE] = STATE_DONE
        return

    def next_proc(self, pid=-1):
        if pid != -1:
            self.curr_proc = pid
            self.move_to_running(STATE_READY)
            return
        for pid in range(self.curr_proc + 1, len(self.proc_info)):
            if self.proc_info[pid][PROC_STATE] == STATE_READY:
                self.curr_proc = pid
                self.move_to_running(STATE_READY)
                return
        for pid in range(0, self.curr_proc + 1):
            if self.proc_info[pid][PROC_STATE] == STATE_READY:
                self.curr_proc = pid
                self.move_to_running(STATE_READY)
                return
        return

    def get_num_processes(self):
        return len(self.proc_info)

    def get_num_instructions(self, pid):
        return len(self.proc_info[pid][PROC_CODE])

    def get_instruction(self, pid, index):
        return self.proc_info[pid][PROC_CODE][index]

    def get_num_active(self):
        num_active = 0
        for pid in range(len(self.proc_info)):
            if self.proc_info[pid][PROC_STATE] != STATE_DONE:
                num_active += 1
        return num_active

    def get_num_runnable(self):
        num_active = 0
        for pid in range(len(self.proc_info)):
            if self.proc_info[pid][PROC_STATE] == STATE_READY or 
                   self.proc_info[pid][PROC_STATE] == STATE_RUNNING:
                num_active += 1
        return num_active

    def get_ios_in_flight(self, current_time):
        num_in_flight = 0
        for pid in range(len(self.proc_info)):
            for t in self.io_finish_times[pid]:
                if t > current_time:
                    num_in_flight += 1
        return num_in_flight

    def check_for_switch(self):
        return

    def space(self, num_columns):
        for i in range(num_columns):
            print '%10s' % ' ',

    def check_if_done(self):
        if len(self.proc_info[self.curr_proc][PROC_CODE]) == 0:
            if self.proc_info[self.curr_proc][PROC_STATE] == STATE_RUNNING:
                self.move_to_done(STATE_RUNNING)
                self.next_proc()
        return

    def run(self):
        clock_tick = 0

        if len(self.proc_info) == 0:
            return

        # track outstanding IOs, per process
        self.io_finish_times = {}
        for pid in range(len(self.proc_info)):
            self.io_finish_times[pid] = []

        # make first one active
        self.curr_proc = 0
        self.move_to_running(STATE_READY)

        # OUTPUT: headers for each column
        print '%s' % 'Time', 
        for pid in range(len(self.proc_info)):
            print '%10s' % ('PID:%2d' % (pid)),
        print '%10s' % 'CPU',
        print '%10s' % 'IOs',
        print ''

        # init statistics
        io_busy = 0
        cpu_busy = 0

        while self.get_num_active() > 0:
            clock_tick += 1

            # check for io finish
            io_done = False
            for pid in range(len(self.proc_info)):
                if clock_tick in self.io_finish_times[pid]:
                    io_done = True
                    self.move_to_ready(STATE_WAIT, pid)
                    if self.io_done_behavior == IO_RUN_IMMEDIATE:
                        # IO_RUN_IMMEDIATE
                        if self.curr_proc != pid:
                            if self.proc_info[self.curr_proc][PROC_STATE] == STATE_RUNNING:
                                self.move_to_ready(STATE_RUNNING)
                        self.next_proc(pid)
                    else:
                        # IO_RUN_LATER
                        if self.process_switch_behavior == SCHED_SWITCH_ON_END and self.get_num_runnable() > 1:
                            # this means the process that issued the io should be run
                            self.next_proc(pid)
                        if self.get_num_runnable() == 1:
                            # this is the only thing to run: so run it
                            self.next_proc(pid)
                    self.check_if_done()
            
            # if current proc is RUNNING and has an instruction, execute it
            instruction_to_execute = ''
            if self.proc_info[self.curr_proc][PROC_STATE] == STATE_RUNNING and 
                   len(self.proc_info[self.curr_proc][PROC_CODE]) > 0:
                instruction_to_execute = self.proc_info[self.curr_proc][PROC_CODE].pop(0)
                cpu_busy += 1

            # OUTPUT: print what everyone is up to
            if io_done:
                print '%3d*' % clock_tick,
            else:
                print '%3d ' % clock_tick,
            for pid in range(len(self.proc_info)):
                if pid == self.curr_proc and instruction_to_execute != '':
                    print '%10s' % ('RUN:'+instruction_to_execute),
                else:
                    print '%10s' % (self.proc_info[pid][PROC_STATE]),
            if instruction_to_execute == '':
                print '%10s' % ' ',
            else:
                print '%10s' % 1,
            num_outstanding = self.get_ios_in_flight(clock_tick)
            if num_outstanding > 0:
                print '%10s' % str(num_outstanding),
                io_busy += 1
            else:
                print '%10s' % ' ',
            print ''

            # if this is an IO instruction, switch to waiting state
            # and add an io completion in the future
            if instruction_to_execute == DO_IO:
                self.move_to_wait(STATE_RUNNING)
                self.io_finish_times[self.curr_proc].append(clock_tick + self.io_length)
                if self.process_switch_behavior == SCHED_SWITCH_ON_IO:
                    self.next_proc()

            # ENDCASE: check if currently running thing is out of instructions
            self.check_if_done()
        return (cpu_busy, io_busy, clock_tick)
        
#
# PARSE ARGUMENTS
#

parser = OptionParser()
parser.add_option('-s', '--seed', default=0, help='the random seed', action='store', type='int', dest='seed')
parser.add_option('-l', '--processlist', default='',
                  help='a comma-separated list of processes to run, in the form X1:Y1,X2:Y2,... where X is the number of instructions that process should run, and Y the chances (from 0 to 100) that an instruction will use the CPU or issue an IO',
                  action='store', type='string', dest='process_list')
parser.add_option('-L', '--iolength', default=5, help='how long an IO takes', action='store', type='int', dest='io_length')
parser.add_option('-S', '--switch', default='SWITCH_ON_IO',
                  help='when to switch between processes: SWITCH_ON_IO, SWITCH_ON_END',
                  action='store', type='string', dest='process_switch_behavior')
parser.add_option('-I', '--iodone', default='IO_RUN_LATER',
                  help='type of behavior when IO ends: IO_RUN_LATER, IO_RUN_IMMEDIATE',
                  action='store', type='string', dest='io_done_behavior')
parser.add_option('-c', help='compute answers for me', action='store_true', default=False, dest='solve')
parser.add_option('-p', '--printstats', help='print statistics at end; only useful with -c flag (otherwise stats are not printed)', action='store_true', default=False, dest='print_stats')
(options, args) = parser.parse_args()

random.seed(options.seed)

assert(options.process_switch_behavior == SCHED_SWITCH_ON_IO or 
       options.process_switch_behavior == SCHED_SWITCH_ON_END)
assert(options.io_done_behavior == IO_RUN_IMMEDIATE or 
       options.io_done_behavior == IO_RUN_LATER)

s = scheduler(options.process_switch_behavior, options.io_done_behavior, options.io_length)

# example process description (10:100,10:100)
for p in options.process_list.split(','):
    s.load(p)

if options.solve == False:
    print 'Produce a trace of what would happen when you run these processes:'
    for pid in range(s.get_num_processes()):
        print 'Process %d' % pid
        for inst in range(s.get_num_instructions(pid)):
            print '  %s' % s.get_instruction(pid, inst)
        print ''
    print 'Important behaviors:'
    print '  System will switch when',
    if options.process_switch_behavior == SCHED_SWITCH_ON_IO:
        print 'the current process is FINISHED or ISSUES AN IO'
    else:
        print 'the current process is FINISHED'
    print '  After IOs, the process issuing the IO will',
    if options.io_done_behavior == IO_RUN_IMMEDIATE:
        print 'run IMMEDIATELY'
    else:
        print 'run LATER (when it is its turn)'
    print ''
    exit(0)

(cpu_busy, io_busy, clock_tick) = s.run()

if options.print_stats:
    print ''
    print 'Stats: Total Time %d' % clock_tick
    print 'Stats: CPU Busy %d (%.2f%%)' % (cpu_busy, 100.0 * float(cpu_busy)/clock_tick)
    print 'Stats: IO Busy  %d (%.2f%%)' % (io_busy, 100.0 * float(io_busy)/clock_tick)
    print ''

The snippet shown below shows some detail of the options:

Options:
  -h, --help            show this help message and exit
  -s SEED, --seed=SEED  the random seed
  -l PROCESS_LIST, --processlist=PROCESS_LIST
                        a comma-separated list of processes to run, in the
                        form X1:Y1,X2:Y2,... where X is the number of
                        instructions that process should run, and Y the
                        chances (from 0 to 100) that an instruction will use
                        the CPU or issue an IO
  -L IO_LENGTH, --iolength=IO_LENGTH
                        how long an IO takes
  -S PROCESS_SWITCH_BEHAVIOR, --switch=PROCESS_SWITCH_BEHAVIOR
                        when to switch between processes: SWITCH_ON_IO,
                        SWITCH_ON_END
  -I IO_DONE_BEHAVIOR, --iodone=IO_DONE_BEHAVIOR
                        type of behavior when IO ends: IO_RUN_LATER,
                        IO_RUN_IMMEDIATE
  -c                    compute answers for me
  -p, --printstats      print statistics at end; only useful with -c flag
                        (otherwise stats are not printed)
  1. Run process-run.py with the following flags: -l 5:100,5:100. What should the CPU utilization be (e.g., the percent of time the CPU is in use?)

    Answer: Simply easy, 100%

  2. Now run with these flags: ./process-run.py -l 4:100,1:0. These flags specify one process with 4 instructions (all to use the CPU), and one that simply issues an I/O and waits for it to be done. How long does it take to complete both processes?

    Answer:10 ticks time

    At first,We don't know the IO length of each instruction, after checking the details of options,we find out that the default IO length is 5 ticks . So we can answer this question.

    1 Run:process 0  Ready:process 1
    
    2 Run:process 0  Ready:process 1
    
    3 Run:process 0  Ready:process 1
    
    4 Run:process 0  Ready:process 1
    
    5 done			 Run:process 1 
    
    6 done 			 Wait:process 1
    
    7 done 			 Wait:process 1
    
    8 done 			 Wait:process 1
    
    9 done 			 Wait:process 1
    
    10 done 		 done
    
  3. Switch the order of the processes: -l 1:0,4:100. What happens now? Does switching the order matter? Why?

    Answer: Yes ,it explicitly is different.

    Because of losing connection to the terminal,we can't do this exercise right now. But I will still try to make an answer for the question,using my ability of reasoning. The answer will be different to the answer of the question 2.

    1 Run:process 0  Ready:process1
    
    2 Wait:process 0 Run: process1
    
    3 Wait:process 0 Run: process1
    
    4 Wait:process 0 Run: process1
    
    5 Wait:process 0 Run: process1
    
    6 done           done
    
  4. We’ll now explore some of the other flags. One important flag is -S, which determines how the system reacts when a process issues an I/O. With the flag set to SWITCH_ON_END, the system will NOT switch to another process while one is doing I/O, instead of waiting until the process is completely finished. What happens when you run the following two processes (-l 1:0,4:100 -c -S SWITCH_ON_END), one doing I/O and the other doing CPU work?

    Answer:

    No, the CPU process will not use the cpu when the IO process is in WAIT state, CPU will switch to CPU process when the IO process is done.

    1 Run:process 0  Ready:process1
    
    2 Wait:process 0 Ready:process1
    
    3 Wait:process 0 Ready:process1
    
    4 Wait:process 0 Ready:process1
    
    5 Wait:process 0 Ready:process1
    
    6 done 			 Run:process 1
    
    7 done 			 Run:process 1
    
    8 done 			 Run:process 1
    
    9 done 			 Run:process 1
    
  5. Now, run the same processes, but with the switching behavior set to switch to another process whenever one is WAITING for I/O (-l 1:0,4:100 -c -S SWITCH_ON_IO). What happens now?

    Answer: the answer is same as the answer 3.

  6. One other important behavior is what to do when an I/O completes. With -I IO_RUN_LATER, when an I/O completes, the process that issued it does not necessarily run right away; rather, whatever was running at the time keeps running. What happens when you run this combination of processes? (Run ./process-run.py -l 3:0,5:100,5:100,5:100 -S SWITCH_ON_IO -I IO_RUN_LATER -c -p) Are system resources being effectively utilized?

    Answer: IO_RUN_LATER mains that the IO process has to wait until all the CPU processes have done. During the execution, there are two part which need to promote, one is process 0 is having an Ready State when process 2 and process 3 are Running, the other is the last three of IO waiting when the cpu is idle.

  7. Now run the same processes, but with -I IO_RUN_IMMEDIATE set, which immediately runs the process that issued the I/O. How does this behavior differ? Why might running a process that just completed an I/O again be a good idea?

    Answer:It will be a good idea when the process have to do other IO tasks.

原文地址:https://www.cnblogs.com/ging/p/14036237.html