进程2 队列,进程间通讯

进程间通信——队列(multiprocess.Queue)

进程间通讯IPC(Inter-Process Communication)

创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。


Queue([maxsize]) 
创建共享的进程队列。maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。底层队列使用管道和锁定实现。另外,还需要运行支持线程以便队列中的数据传输到底层管道中。 
Queue的实例q具有以下方法:

q.get( [ block [ ,timeout ] ] ) 
返回q中的一个项目。如果q为空,此方法将阻塞,直到队列中有项目可用为止。block用于控制阻塞行为,默认为True. 如果设置为False,将引发Queue.Empty异常(定义在Queue模块中)。timeout是可选超时时间,用在阻塞模式中。如果在制定的时间间隔内没有项目变为可用,将引发Queue.Empty异常。

q.get_nowait( ) 
同q.get(False)方法。

q.put(item [, block [,timeout ] ] ) 
将item放入队列。如果队列已满,此方法将阻塞至有空间可用为止。block控制阻塞行为,默认为True。如果设置为False,将引发Queue.Empty异常(定义在Queue库模块中)。timeout指定在阻塞模式中等待可用空间的时间长短。超时后将引发Queue.Full异常。

q.qsize() 
返回队列中目前项目的正确数量。此函数的结果并不可靠,因为在返回结果和在稍后程序中使用结果之间,队列中可能添加或删除了项目。在某些系统上,此方法可能引发NotImplementedError异常。


q.empty() 
如果调用此方法时 q为空,返回True。如果其他进程或线程正在往队列中添加项目,结果是不可靠的。也就是说,在返回和使用结果之间,队列中可能已经加入新的项目。

q.full() 
如果q已满,返回为True. 由于线程的存在,结果也可能是不可靠的(参考q.empty()方法)。。
Queue

q.close() 
关闭队列,防止队列中加入更多数据。调用此方法时,后台线程将继续写入那些已入队列但尚未写入的数据,但将在此方法完成时马上关闭。如果q被垃圾收集,将自动调用此方法。关闭队列不会在队列使用者中生成任何类型的数据结束信号或异常。例如,如果某个使用者正被阻塞在get()操作上,关闭生产者中的队列不会导致get()方法返回错误。

q.cancel_join_thread() 
不会再进程退出时自动连接后台线程。这可以防止join_thread()方法阻塞。

q.join_thread() 
连接队列的后台线程。此方法用于在调用q.close()方法后,等待所有队列项被消耗。默认情况下,此方法由不是q的原始创建者的所有进程调用。调用q.cancel_join_thread()方法可以禁止这种行为。
Queue其他方法(了解)

代码实例:

from multiprocessing import Queue
q=Queue(4)
q.put('a')
q.put(6)
q.put(8)
q.put(12) # 如果队列已经满了,程序就会停在这里,等待数据被别人取走,再将数据放入队列。
           # 如果队列中的数据一直不被取走,程序就会永远停在这里。
try:
    q.pet_nowait(5)        # 可以使用put_nowait,如果队列满了不会阻塞,但是会因为队列满了而报错。
except:  # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去,但是会丢掉这个消息。
    print('Queue is full!')
print(q.full())    #查看队列是否满了
print(q.get())
print(q.get())
print(q.get())
print(q.get())
# print(q.get())   #同put函数一样,队列空了会堵塞
try:
    q.get_nowait(5)        # 可以使用gut_nowait,如果队列空了不会阻塞,但是会因为队列满了而报错。
except:  # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去,但是会丢掉这个消息。
    print('Queue is empty!')

print(q.empty())  #查看队列是否为空
队列用法
import time
from    multiprocessing import Process,Queue


def f(q):
    q.put([time.asctime(),'from lilei','hello'])#调用主函数中p进程传递过来的进程参数 put函数为向队列中添加一条数据。

if __name__=="__main__":
    q=Queue()  #创建一个队列
    p=Process(target=f,args=(q,))  #创建一个进程
    p.start()
    print(q.get())
    p.join()
进程间通讯,队列简单应用

生产消费者模型

在并发编程中使用生产者和消费者模式能够解决绝大多数并发问题。该模式通过平衡生产线程和消费线程的工作能力来提高程序的整体处理数据的速度。

为什么要使用生产者和消费者模式

在线程世界里,生产者就是生产数据的线程,消费者就是消费数据的线程。在多线程开发当中,如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据。同样的道理,如果消费者的处理能力大于生产者,那么消费者就必须等待生产者。为了解决这个问题于是引入了生产者和消费者模式。

什么是生产者消费者模式

生产者消费者模式是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。

import time,os,random
from    multiprocessing import Process,Queue

def consumer(q):
    while True:
        res=q.get()
        time.sleep(random.randint(1,3))
        print('33[45m%s 吃 %s33[0m' %(os.getpid(),res))

def proceser(q):
    for i in range(10):
        time.sleep(random.randint(1, 3))
        msg = '包子%s' % i
        q.put(msg)
        print('33[44m%s 做了 %s33[0m' % (os.getpid(), msg))
if __name__=='__main__':
    q=Queue()
    p1=Process(target=proceser,args=(q,))
    p2=Process(target=consumer,args=(q,))
    p1.start()
    p2.start()
    print('主程序')
基于队列实现生产者消费者模型

此时的问题是主进程永远不会结束,原因是:生产者p在生产完后就结束了,但是消费者c在取空了q之后,则一直处于死循环中且卡在q.get()这一步。

解决方式无非是让生产者在生产完毕后,往队列中再发一个结束信号,这样消费者在接收到结束信号后就可以break出死循环。

import time,os,random
from    multiprocessing import Process,Queue

def consumer(q):
    while True:
        res=q.get()
        if res is None:break  #收到信号,结束进程
        time.sleep(random.randint(1,3))
        print('33[45m%s 吃 %s33[0m' %(os.getpid(),res))

def proceser(q):
    for i in range(10):
        time.sleep(random.randint(1, 3))
        msg = '包子%s' % i
        q.put(msg)
        print('33[44m%s 做了 %s33[0m' % (os.getpid(), msg))
    q.put(None)  #发送信号
if __name__=='__main__':
    q=Queue()
    p1=Process(target=proceser,args=(q,))
    p2=Process(target=consumer,args=(q,))
    p1.start()
    p2.start()
    print('主程序')
改良—生产消费者模型

注意:结束信号None,不一定要由生产者发,主进程里同样可以发,但主进程需要等生产者结束后才应该发送该信号

import time,os,random
from    multiprocessing import Process,Queue

def consumer(q):
    while True:
        res=q.get()
        if res is None:break  #收到信号,结束进程
        time.sleep(random.randint(1,3))
        print('33[45m%s 吃 %s33[0m' %(os.getpid(),res))

def proceser(q):
    for i in range(10):
        time.sleep(random.randint(1, 3))
        msg = '包子%s' % i
        q.put(msg)
        print('33[44m%s 做了 %s33[0m' % (os.getpid(), msg))

if __name__=='__main__':
    q=Queue()
    p1=Process(target=proceser,args=(q,))
    p2=Process(target=consumer,args=(q,))
    p1.start()
    p2.start()

    p1.join()
    q.put(None)  # 发送信号
    print('主程序')
主进程在生产结束后发送None

但上述解决方式,在有多个生产者和多个消费者时,我们则需要用一个很low的方式去解决

import time,os,random
from    multiprocessing import Process,Queue

def consumer(q):
    while True:
        res=q.get()
        if res is None:break  #收到信号,结束进程
        time.sleep(random.randint(1,3))
        print('33[45m%s 吃 %s33[0m' %(os.getpid(),res))

def proceser(food,q):
    for i in range(10):
        time.sleep(random.randint(1, 3))
        msg = '%s%s' % (food,i)
        q.put(msg)
        print('33[44m%s 做了 %s33[0m' % (os.getpid(), msg))

if __name__=='__main__':
    q=Queue()
    p1=Process(target=proceser,args=('包子',q))
    p2 = Process(target=proceser, args=('饺子', q))
    p3 = Process(target=proceser, args=('酱骨头', q))
    c1=Process(target=consumer,args=(q,))
    c2 = Process(target=consumer, args=(q,))

    p1.start()
    p2.start()
    p3.start()

    c1.start()

    p1.join()  #必须保证生产者全部生产完毕,才应该发送结束信号
    p2.join()
    p3.join()
    q.put(None) # 有几个消费者就发送几次信号
    q.put(None)  # 发送信号
    print('主程序')
多消费者—有多少生产者发送几次信号

 JoinableQueue([maxsize]) 
创建可连接的共享进程队列。这就像是一个Queue对象,但队列允许项目的使用者通知生产者项目已经被成功处理。通知进程是使用共享的信号和条件变量来实现的。 

JoinableQueue的实例p除了与Queue对象相同的方法之外,还具有以下方法:

q.task_done() 
使用者使用此方法发出信号,表示q.get()返回的项目已经被处理。如果调用此方法的次数大于从队列中删除的项目数量,将引发ValueError异常。

q.join() 
生产者将使用此方法进行阻塞,直到队列中所有项目均被处理。阻塞将持续到为队列中的每个项目均调用q.task_done()方法为止。 
下面的例子说明如何建立永远运行的进程,使用和处理队列上的项目。生产者将项目放入队列,并等待它们被处理
方法介绍
import time,os,random
from    multiprocessing import Process,JoinableQueue

def consumer(q):
    while True:
        res=q.get()
        time.sleep(random.randint(1,3))
        print('33[45m%s 吃 %s33[0m' %(os.getpid(),res))
        q.task_done()    #向q.join()发送一次信号,证明一个数据已经被取走了
def proceser(food,q):
    for i in range(10):
        time.sleep(random.randint(1, 3))
        msg = '%s%s' % (food,i)
        q.put(msg)
        print('33[44m%s 做了 %s33[0m' % (os.getpid(), msg))
    q.join()    #生产完毕,使用此方法进行阻塞,直到队列中所有项目均被处理。
if __name__=='__main__':
    q=JoinableQueue()
    p1=Process(target=proceser,args=('包子',q))
    p2 = Process(target=proceser, args=('饺子', q))
    p3 = Process(target=proceser, args=('酱骨头', q))
    c1=Process(target=consumer,args=(q,))
    c2 = Process(target=consumer, args=(q,))
    c1.daemon=True
    c2.daemon=True

    p1.start()
    p2.start()
    p3.start()

    c1.start()

    p1.join()  #必须保证生产者全部生产完毕,才应该发送结束信号
    p2.join()
    p3.join()
    print('主程序')
    # 主进程等--->p1,p2,p3等---->c1,c2
    # p1,p2,p3结束了,证明c1,c2肯定全都收完了p1,p2,p3发到队列的数据
    # 因而c1,c2也没有存在的价值了,不需要继续阻塞在进程中影响主进程了。应该随着主进程的结束而结束,所以设置成守护进程就可以了。
JoinableQuequ实现生产者消费者模型
 

进程之间的数据共享

展望未来,基于消息传递的并发编程是大势所趋

即便是使用线程,推荐做法也是将程序设计为大量独立的线程集合,通过消息队列交换数据。

这样极大地减少了对使用锁定和其他同步手段的需求,还可以扩展到分布式系统中。

但进程间应该尽量避免通信,即便需要通信,也应该选择进程安全的工具来避免加锁带来的问题。

以后我们会尝试使用数据库来解决现在进程之间的数据共享问题。
 
进程间数据是独立的,可以借助于队列或管道实现通信,二者都是基于消息传递的
虽然进程间数据独立,但可以通过Manager实现数据共享,事实上Manager的功能远不止于此

A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.

A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array.
Manager模块介绍

from multiprocessing import Manager,Process,Lock
def work(d,lock):
    with lock: #不加锁而操作共享的数据,肯定会出现数据错乱
        d['count']-=1

if __name__ == '__main__':
    lock=Lock()
    with Manager() as m:
        dic=m.dict({'count':100})
        p_l=[]
        for i in range(100):
            p=Process(target=work,args=(dic,lock))
            p_l.append(p)
            p.start()
        for p in p_l:
            p.join()
        print(dic)
Manager例子

进程池和multiprocess.Pool模块

进程池

为什么要有进程池?进程池的概念。

在程序实际处理问题过程中,忙时会有成千上万的任务需要被执行,闲时可能只有零星任务。那么在成千上万个任务需要被执行的时候,我们就需要去创建成千上万个进程么?首先,创建进程需要消耗时间,销毁进程也需要消耗时间。第二即便开启了成千上万的进程,操作系统也不能让他们同时执行,这样反而会影响程序的效率。因此我们不能无限制的根据任务开启或者结束进程。那么我们要怎么做呢?

在这里,要给大家介绍一个进程池的概念,定义一个池子,在里面放上固定数量的进程,有需求来了,就拿一个池中的进程来处理任务,等到处理完毕,进程并不关闭,而是将进程再放回进程池中继续等待任务。如果有很多任务需要执行,池中的进程数量不够,任务就要等待之前的进程执行任务完毕归来,拿到空闲进程才能继续执行。也就是说,池中进程的数量是固定的,那么同一时间最多有固定数量的进程在运行。这样不会增加操作系统的调度难度,还节省了开闭进程的时间,也一定程度上能够实现并发效果。

multiprocess.Pool模块

概念介绍

Pool([numprocess  [,initializer [, initargs]]]):创建进程池
1 numprocess:要创建的进程数,如果省略,将默认使用cpu_count()的值
2 initializer:是每个工作进程启动时要执行的可调用对象,默认为None
3 initargs:是要传给initializer的参数组
主要方法
其他方法(了解)

代码实例

import os,time
from multiprocessing import Pool

def work(n):
    print('%s run'%os.getpid())
    time.sleep(2)
    return n**2

if __name__=='__main__':
    pool=Pool(3)   #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
    res_l=[]
    for i in range(10):
        res=pool.apply(work,args=(i,)) # 同步调用,直到本次任务执行完毕拿到res,等待任务work执行的过程中可能有阻塞也可能没有阻塞
                                      # 但不管该任务是否存在阻塞,同步调用都会在原地等着

        res_l.append(res)
    print(res_l)
'''执行结果:
8356 run
7380 run
7412 run
8356 run
7380 run
7412 run
8356 run
7380 run
7412 run
8356 run
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
进程池同步调用
import os,time,random
from multiprocessing import Pool

def work(n):
    print('%s run'%os.getpid())
    time.sleep(random.random())
    return n**2

if __name__=='__main__':
    pool=Pool(3)   #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
    res_l=[]
    for i in range(10):
        res=pool.apply_async(work,args=(i,)) # 异步运行,根据进程池中有的进程数,每次最多3个子进程在异步执行
        res_l.append(res)                    # 返回结果之后,将结果放入列表,归还进程,之后再执行新的任务
                                             # 需要注意的是,进程池中的三个进程不会同时开启或者同时结束
                                             # 而是执行完一个就释放一个进程,这个进程就去接收新的任务。      
# 异步apply_async用法:如果使用异步提交的任务,主进程需要使用jion,等待进程池内任务都处理完,然后可以用get收集结果
# 否则,主进程结束,进程池可能还没来得及执行,也就跟着一起结束了
    pool.close()
    pool.join()
    for re in res_l:
        print(re.get())#使用get来获取apply_aync的结果,如果是apply,则没有get方法,因为apply是同步执行,立刻获取结果,也根本无需get
异步调用



原文地址:https://www.cnblogs.com/geng-xiaoqiaoliushui/p/10663983.html