微分方程解耦

  对于实系数线性微分方程组

[X' = AX: = left{ egin{array}{l}{{x'}_1} = a{x_1} + b{x_2}\{{x'}_2} = c{x_1} + d{x_2}end{array} ight.]

  很显然,每一个微分方程都是两个自变量的函数,如果矩阵(A)有完备的特征向量(且不能有复特征值),即存在两个线性无关的特征向量(overrightarrow {{alpha _1}} ,overrightarrow {{alpha _2}} ),

[egin{array}{l}AE = Aleft[ {overrightarrow {{alpha _1}} ;;overrightarrow {{alpha _2}} } ight] = left[ {Aoverrightarrow {{alpha _1}} ;;Aoverrightarrow {{alpha _2}} } ight]\;;;;;;;;;;;;;;;;;;;;;;;; = left[ {{lambda _1}overrightarrow {{alpha _1}} ;;{lambda _2}Aoverrightarrow {{alpha _2}} } ight]\;;;;;;;;;;;;;;;;;;;;;;;; = left[ {overrightarrow {{alpha _1}} ;;overrightarrow {{alpha _2}} } ight]left[ egin{array}{l}{lambda _1};;;0\0;;;{lambda _2}end{array} ight]\;;;;;;;;;;;;;;;;;;;;;;;; = Eleft[ egin{array}{l}{lambda _1};;;0\0;;;{lambda _2}end{array} ight]end{array}]

从而有

[{E^{ - 1}}AE = left[ egin{array}{l}{lambda _1};;;0\0;;;{lambda _2}end{array} ight]]

以上就是对角化的过程,即用线性无关的特征向量组成矩阵(E)。尽管(overrightarrow {{alpha _1}} ,overrightarrow {{alpha _2}} )线性无关,但未必正交,如果能找到一个变换,将(overrightarrow {{alpha _1}} ,overrightarrow {{alpha _2}} )变换为两个正交的向量,通过变量代换,则可以将原方程组中的两个耦合的方程组化为不耦合的两个方程组,即完成解耦。

  可以基于这一想法来寻找变换,即如果将原坐标系下的(left( egin{array}{l}{x_1}\{x_2}end{array} ight) = overrightarrow {{alpha _1}} o left( egin{array}{l}0\1end{array} ight)),(left( egin{array}{l}{x_1}\{x_2}end{array} ight) = overrightarrow {{alpha _2}} o left( egin{array}{l}1\0end{array} ight)),即完成了正交化,意思是原坐标系下坐标分别为(overrightarrow {{alpha _1}} ,overrightarrow {{alpha _2}} )的向量,在新坐标系下变成了(left( egin{array}{l}0\1end{array} ight),left( egin{array}{l}1\0end{array} ight)),如果新坐标系用(left( egin{array}{l}{u_1}\{u_2}end{array} ight))来表示,那么,(left( egin{array}{l}{x_1}\{x_2}end{array} ight))和(left( egin{array}{l}{u_1}\{u_2}end{array} ight))之间是什么关系呢?这种关系即是我们需要寻找的变换,其实上述思想已经暗含了变换,即

[left( egin{array}{l}{x_1}\{x_2}end{array} ight) = left[ {overrightarrow {{alpha _1}} ;;overrightarrow {{alpha _2}} } ight]left( egin{array}{l}{u_1}\{u_2}end{array} ight) = Eleft( egin{array}{l}{u_1}\{u_2}end{array} ight)]

取(left( egin{array}{l}{u_1}\{u_2}end{array} ight) = left( egin{array}{l}0\1end{array} ight))和(left( egin{array}{l}{u_1}\{u_2}end{array} ight) = left( egin{array}{l}1\0end{array} ight))代入上式即可验证。从变换中,可以解出({x_1} = p{u_1} + q{u_2},{x_2} = r{u_1} + s{u_2}),代入原微分方程组,得到以({u_1},{u_2})为自变量的微分方程组,可以证明,方程组中的两个方程不耦合。由以上看出,由特征向量组成的矩阵在对角化和解耦合中的意义。

原文地址:https://www.cnblogs.com/gemstone/p/3398916.html