线性回归的 Python 实现

本博文来自于 《动手学深度学习》 本博文只是记录学习笔记,方便日后查缺补漏,如有侵权,联系删除

线性回归的从零开始实现

在了解了线性回归的背景知识之后,现在可以动手实现它了。尽管强大的深度学习框架可以减少大量重复性工作,但若过于依赖它提供的便利,会导致我们很难深入理解深度学习是如何工作的。因此,本节将介绍如何只利用NDArrayautograd来实现一个线性回归的训练。

首先,导入本节中实验所需的包或模块,其中的matplotlib包可用于作图,且设置成嵌入显示。

%matplotlib inline
from IPython import display
from matplotlib import pyplot as plt
from mxnet import autograd, nd
import random

生成数据集

我们构造一个简单的人工训练数据集,它可以使我们能够直观比较学到的参数和真实的模型参数的区别。设训练数据集样本数为1000,输入个数(特征数)为2。给定随机生成的批量样本特征(oldsymbol{X} in mathbb{R}^{1000 imes 2}),我们使用线性回归模型真实权重(oldsymbol{w} = [2, -3.4]^ op)和偏差(b = 4.2),以及一个随机噪声项(epsilon)来生成标签

[oldsymbol{y} = oldsymbol{X}oldsymbol{w} + b + epsilon, ]

其中噪声项(epsilon)服从均值为0、标准差为0.01的正态分布。噪声代表了数据集中无意义的干扰。下面,让我们生成数据集。

num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = nd.random.normal(scale=1, shape=(num_examples, num_inputs))
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += nd.random.normal(scale=0.01, shape=labels.shape)

注意,features的每一行是一个长度为2的向量,而labels的每一行是一个长度为1的向量(标量)。

features[0], labels[0]
(
 [1.1630785 0.4838046]
 <NDArray 2 @cpu(0)>,
 
 [4.879625]
 <NDArray 1 @cpu(0)>)

通过生成第二个特征features[:, 1]和标签 labels 的散点图,可以更直观地观察两者间的线性关系。

def use_svg_display():
    # 用矢量图显示
    display.set_matplotlib_formats('svg')

def set_figsize(figsize=(3.5, 2.5)):
    use_svg_display()
    # 设置图的尺寸
    plt.rcParams['figure.figsize'] = figsize

set_figsize()
plt.scatter(features[:, 1].asnumpy(), labels.asnumpy(), 1);  # 加分号只显示图

图片

我们将上面的plt作图函数以及use_svg_display函数和set_figsize函数定义在d2lzh包里。以后在作图时,我们将直接调用d2lzh.plt。由于pltd2lzh包中是一个全局变量,我们在作图前只需要调用d2lzh.set_figsize()即可打印矢量图并设置图的尺寸。

读取数据集

在训练模型的时候,我们需要遍历数据集并不断读取小批量数据样本。这里我们定义一个函数:它每次返回batch_size(批量大小)个随机样本的特征和标签。

# 本函数已保存在d2lzh包中方便以后使用
def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    random.shuffle(indices)  # 样本的读取顺序是随机的
    for i in range(0, num_examples, batch_size):
        j = nd.array(indices[i: min(i + batch_size, num_examples)])
        yield features.take(j), labels.take(j)  # take函数根据索引返回对应元素

让我们读取第一个小批量数据样本并打印。每个批量的特征形状为(10, 2),分别对应批量大小和输入个数;标签形状为批量大小。

batch_size = 10

for X, y in data_iter(batch_size, features, labels):
    print(X, y)
    break
[[ 0.21308574  0.13773239]
 [-0.7808355  -0.5344644 ]
 [ 1.0059307  -0.41143978]
 [-0.7230168   0.88875777]
 [ 0.54754204 -0.89240056]
 [ 1.3458539   1.3153399 ]
 [-1.4248496   1.634742  ]
 [ 0.09671763 -0.6283186 ]
 [ 0.06373069 -0.12645188]
 [ 0.6770596  -2.5028148 ]]
<NDArray 10x2 @cpu(0)> 
[ 4.1537848  4.455289   7.6126523 -0.2697006  8.332248   2.423565
 -4.2019567  6.5207925  4.752663  14.064407 ]
<NDArray 10 @cpu(0)>

初始化模型参数

我们将权重初始化成均值为0、标准差为0.01的正态随机数,偏差则初始化成0。

w = nd.random.normal(scale=0.01, shape=(num_inputs, 1))
b = nd.zeros(shape=(1,))

之后的模型训练中,需要对这些参数求梯度来迭代参数的值,因此我们需要创建它们的梯度。

w.attach_grad()
b.attach_grad()

定义模型

下面是线性回归的矢量计算表达式的实现。我们使用dot函数做矩阵乘法。

def linreg(X, w, b):  # 本函数已保存在d2lzh包中方便以后使用
    return nd.dot(X, w) + b

定义损失函数

我们使用上一节描述的平方损失来定义线性回归的损失函数。在实现中,我们需要把真实值y变形成预测值y_hat的形状。以下函数返回的结果也将和y_hat的形状相同。

def squared_loss(y_hat, y):  # 本函数已保存在d2lzh包中方便以后使用
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

定义优化算法

以下的sgd函数实现了上一节中介绍的小批量随机梯度下降算法。它通过不断迭代模型参数来优化损失函数。这里自动求梯度模块计算得来的梯度是一个批量样本的梯度和。我们将它除以批量大小来得到平均值。

def sgd(params, lr, batch_size):  # 本函数已保存在d2lzh包中方便以后使用
    for param in params:
        param[:] = param - lr * param.grad / batch_size

训练模型

在训练中,我们将多次迭代模型参数。在每次迭代中,我们根据当前读取的小批量数据样本(特征X和标签y),通过调用反向函数backward计算小批量随机梯度,并调用优化算法sgd迭代模型参数。由于我们之前设批量大小batch_size为10,每个小批量的损失l的形状为(10, 1)。回忆一下“自动求梯度”一节。由于变量l并不是一个标量,运行l.backward()将对l中元素求和得到新的变量,再求该变量有关模型参数的梯度。

在一个迭代周期(epoch)中,我们将完整遍历一遍data_iter函数,并对训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。这里的迭代周期个数num_epochs和学习率lr都是超参数,分别设3和0.03。在实践中,大多超参数都需要通过反复试错来不断调节。虽然迭代周期数设得越大模型可能越有效,但是训练时间可能过长。我们会在后面“优化算法”一章中详细介绍学习率对模型的影响。

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):  # 训练模型一共需要num_epochs个迭代周期
    # 在每一个迭代周期中,会使用训练数据集中所有样本一次(假设样本数能够被批量大小整除)。X
    # 和y分别是小批量样本的特征和标签
    for X, y in data_iter(batch_size, features, labels):
        with autograd.record():
            l = loss(net(X, w, b), y)  # l是有关小批量X和y的损失
        l.backward()  # 小批量的损失对模型参数求梯度
        sgd([w, b], lr, batch_size)  # 使用小批量随机梯度下降迭代模型参数
    train_l = loss(net(features, w, b), labels)
    print('epoch %d, loss %f' % (epoch + 1, train_l.mean().asnumpy()))
epoch 1, loss 0.035194
epoch 2, loss 0.000120
epoch 3, loss 0.000048

训练完成后,我们可以比较学到的参数和用来生成训练集的真实参数。它们应该很接近。

true_w, w
([2, -3.4],
 
 [[ 1.9993881]
  [-3.399913 ]]
 <NDArray 2x1 @cpu(0)>)
true_b, b
(4.2,
 
 [4.200307]
 <NDArray 1 @cpu(0)>)

小结

  • 可以看出,仅使用NDArrayautograd模块就可以很容易地实现一个模型。接下来,会在此基础上描述更多深度学习模型,并介绍怎样使用更简洁的代码(见下一节)来实现它们。

练习

  • 为什么squared_loss函数中需要使用reshape函数?
  • 尝试使用不同的学习率,观察损失函数值的下降快慢。
  • 如果样本个数不能被批量大小整除,data_iter函数的行为会有什么变化?

线性回归的简洁实现

随着深度学习框架的发展,开发深度学习应用变得越来越便利。实践中,我们通常可以用比上一节更简洁的代码来实现同样的模型。在本节中,我们将介绍如何使用MXNet提供的Gluon接口更方便地实现线性回归的训练。

生成数据集

我们生成与上一节中相同的数据集。其中features是训练数据特征,labels是标签。

from mxnet import autograd, nd

num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = nd.random.normal(scale=1, shape=(num_examples, num_inputs))
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += nd.random.normal(scale=0.01, shape=labels.shape)

读取数据集

Gluon提供了data包来读取数据。由于data常用作变量名,我们将导入的data模块用添加了Gluon首字母的假名gdata代替。在每一次迭代中,我们将随机读取包含10个数据样本的小批量。

from mxnet.gluon import data as gdata

batch_size = 10
# 将训练数据的特征和标签组合
dataset = gdata.ArrayDataset(features, labels)
# 随机读取小批量
data_iter = gdata.DataLoader(dataset, batch_size, shuffle=True)

这里data_iter的使用与上一节中的一样。让我们读取并打印第一个小批量数据样本。

for X, y in data_iter:
    print(X, y)
    break
[[ 0.27629048  0.00236695]
 [ 1.4526376   2.131333  ]
 [-0.37976772  0.71671826]
 [-0.49162972 -1.0730255 ]
 [ 0.2311468  -0.5463758 ]
 [ 0.17943777  1.3990828 ]
 [-0.5599185  -0.1873703 ]
 [-1.6635175   0.25828022]
 [ 1.0597942  -0.7500004 ]
 [-1.444735   -0.6828681 ]]
<NDArray 10x2 @cpu(0)> 
[ 4.7376227  -0.13999683  1.002221    6.872473    6.524872   -0.20697819
  3.704571   -0.02414168  8.884573    3.6316695 ]
<NDArray 10 @cpu(0)>

定义模型

在上一节从零开始的实现中,我们需要定义模型参数,并使用它们一步步描述模型是怎样计算的。当模型结构变得更复杂时,这些步骤将变得更烦琐。其实,Gluon提供了大量预定义的层,这使我们只需关注使用哪些层来构造模型。下面将介绍如何使用Gluon更简洁地定义线性回归。

首先,导入nn模块。实际上,“nn”是neural networks(神经网络)的缩写。顾名思义,该模块定义了大量神经网络的层。我们先定义一个模型变量net,它是一个Sequential实例。在Gluon中,Sequential实例可以看作是一个串联各个层的容器。在构造模型时,我们在该容器中依次添加层。当给定输入数据时,容器中的每一层将依次计算并将输出作为下一层的输入。

from mxnet.gluon import nn

net = nn.Sequential()

回顾图3.1中线性回归在神经网络图中的表示。作为一个单层神经网络,线性回归输出层中的神经元和输入层中各个输入完全连接。因此,线性回归的输出层又叫全连接层。在Gluon中,全连接层是一个Dense实例。我们定义该层输出个数为1。

net.add(nn.Dense(1))

值得一提的是,在Gluon中我们无须指定每一层输入的形状,例如线性回归的输入个数。当模型得到数据时,例如后面执行net(X)时,模型将自动推断出每一层的输入个数。我们将在之后“深度学习计算”一章详细介绍这种机制。Gluon的这一设计为模型开发带来便利。

初始化模型参数

在使用net前,我们需要初始化模型参数,如线性回归模型中的权重和偏差。我们从MXNet导入init模块。该模块提供了模型参数初始化的各种方法。这里的initinitializer的缩写形式。我们通过init.Normal(sigma=0.01)指定权重参数每个元素将在初始化时随机采样于均值为0、标准差为0.01的正态分布。偏差参数默认会初始化为零。

from mxnet import init

net.initialize(init.Normal(sigma=0.01))

定义损失函数

在Gluon中,loss模块定义了各种损失函数。我们用假名gloss代替导入的loss模块,并直接使用它提供的平方损失作为模型的损失函数。

from mxnet.gluon import loss as gloss

loss = gloss.L2Loss()  # 平方损失又称L2范数损失

定义优化算法

同样,我们也无须实现小批量随机梯度下降。在导入Gluon后,我们创建一个Trainer实例,并指定学习率为0.03的小批量随机梯度下降(sgd)为优化算法。该优化算法将用来迭代net实例所有通过add函数嵌套的层所包含的全部参数。这些参数可以通过collect_params函数获取。

from mxnet import gluon

trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.03})

训练模型

在使用Gluon训练模型时,我们通过调用Trainer实例的step函数来迭代模型参数。上一节中我们提到,由于变量l是长度为batch_size的一维NDArray,执行l.backward()等价于执行l.sum().backward()。按照小批量随机梯度下降的定义,我们在step函数中指明批量大小,从而对批量中样本梯度求平均。

num_epochs = 3
for epoch in range(1, num_epochs + 1):
    for X, y in data_iter:
        with autograd.record():
            l = loss(net(X), y)
        l.backward()
        trainer.step(batch_size)
    l = loss(net(features), labels)
    print('epoch %d, loss: %f' % (epoch, l.mean().asnumpy()))
epoch 1, loss: 0.035121
epoch 2, loss: 0.000125
epoch 3, loss: 0.000049

下面我们分别比较学到的模型参数和真实的模型参数。我们从net获得需要的层,并访问其权重(weight)和偏差(bias)。学到的参数和真实的参数很接近。

dense = net[0]
true_w, dense.weight.data()
([2, -3.4],
 
 [[ 1.9994348 -3.3995006]]
 <NDArray 1x2 @cpu(0)>)
true_b, dense.bias.data()
(4.2,
 
 [4.2002063]
 <NDArray 1 @cpu(0)>)

小结

  • 使用Gluon可以更简洁地实现模型。
  • 在Gluon中,data模块提供了有关数据处理的工具,nn模块定义了大量神经网络的层,loss模块定义了各种损失函数。
  • MXNet的initializer模块提供了模型参数初始化的各种方法。

练习

  • 如果将l = loss(net(X), y)替换成l = loss(net(X), y).mean(),我们需要将trainer.step(batch_size)相应地改成trainer.step(1)。这是为什么呢?
  • 查阅MXNet文档,看看gluon.lossinit模块里提供了哪些损失函数和初始化方法。
  • 如何访问dense.weight的梯度?
原文地址:https://www.cnblogs.com/geekfx/p/13886684.html