深入理解Keras中LSTM的stateful和stateless应用区别

本文通过让LSTM学习字母表,来预测下一个字母,详细的请参考:

https://blog.csdn.net/zwqjoy/article/details/80493341

https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/

一、Stateful模式预测下一个字母

# Stateful LSTM to learn one-char to one-char mapping
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.utils import np_utils
# fix random seed for reproducibility
numpy.random.seed(7)
# define the raw dataset
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# create mapping of characters to integers (0-25) and the reverse
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
# prepare the dataset of input to output pairs encoded as integers
seq_length = 1
dataX = []
dataY = []
for i in range(0, len(alphabet) - seq_length, 1):
    seq_in = alphabet[i:i + seq_length]
    seq_out = alphabet[i + seq_length]
    dataX.append([char_to_int[char] for char in seq_in])
    dataY.append(char_to_int[seq_out])
    print (seq_in, '->', seq_out)
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (len(dataX), seq_length, 1))
# normalize
X = X / float(len(alphabet))
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# create and fit the model
batch_size = 1
model = Sequential()
model.add(LSTM(16, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
for i in range(300):
    model.fit(X, y, epochs=1, batch_size=batch_size, verbose=2, shuffle=False)
    model.reset_states()
# summarize performance of the model
scores = model.evaluate(X, y, batch_size=batch_size, verbose=0)
model.reset_states()
print("Model Accuracy: %.2f%%" % (scores[1]*100))

OUT:

Model Accuracy: 100.00%

模型训练后预测一下:

model.reset_states()#这个时候我们重置一下状态,那么就会从字母表的开头开始
# demonstrate some model predictions
seed = [char_to_int[alphabet[0]]]
for i in range(0, len(alphabet)-1):
    x = numpy.reshape(seed, (1, len(seed), 1))
    x = x / float(len(alphabet))
    prediction = model.predict(x, verbose=0)
    index = numpy.argmax(prediction)
    print (int_to_char[seed[0]], "->", int_to_char[index])
    seed = [index]

OUT:

A -> B
B -> C
C -> D
D -> E
E -> F
F -> G
G -> H
H -> I
I -> J
J -> K
K -> L
L -> M
M -> N
N -> O
O -> P
P -> Q
Q -> R
R -> S
S -> T
T -> U
U -> V
V -> W
W -> X
X -> Y
Y -> Z

那么如果我们从中间字母开始预测呢?
model.reset_states()#这个时候我们依然先重置一下状态
# demonstrate a random starting point
letter = "K"
seed = [char_to_int[letter]]
print ("New start: ", letter)
for i in range(0, 5):
    x = numpy.reshape(seed, (1, len(seed), 1))
    x = x / float(len(alphabet))
    prediction = model.predict(x, verbose=0)
    index = numpy.argmax(prediction)
    print (int_to_char[seed[0]], "->", int_to_char[index])
    seed = [index]

OUT:

New start:  K
K -> B
B -> C
C -> D
D -> E
E -> F
我们可以看到,重置状态后,即便是从中间的字母K开始预测,接下来输出依然是从字母表开始输出一样输出B,这说明前一个状态的输入Ct-1的作用是大于本次的输入xt的
如果我们不重置状态,直接从中间字母开始呢?
# demonstrate a random starting point
letter = "K"
seed = [char_to_int[letter]]
print ("New start: ", letter)
for i in range(0, 5):
    x = numpy.reshape(seed, (1, len(seed), 1))
    x = x / float(len(alphabet))
    prediction = model.predict(x, verbose=0)
    index = numpy.argmax(prediction)
    print (int_to_char[seed[0]], "->", int_to_char[index])
    seed = [index]

OUT:

New start:  K
K -> Z
Z -> Z
Z -> Z
Z -> Z
Z -> Z
我们可以看到,没有重置状态,直接预测,输入的状态依然是接着上一次的最后输出状态开始的,所以都预测成了Z,再次说明了上一次的状态输入其作用大于本次的输入。

二、Stateless模式预测下一个字母

       从上面stateful模式我们可以看出,需要经常重置状态,否则状态就会不停延续上一次,有时候并不需要状态一直延续;stateless模式默认的就是自动重置状态,而且stateless模式可以完成大部分的任务,因为连续的timestep往往就放在一个sample里来循环了,样本之间尽量保持独立,所以不要滥用stateful模式。

  下面我们用stateless模式来让模型学习字母表中的随机子序列,从而预测下一个字母,序列最大长度为5,不够补0填充,各个子序列之间独立,这种模式可能是现实中应用比较多的。

import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.utils import np_utils
from keras.preprocessing.sequence import pad_sequences
from keras import callbacks

#构建字母与数字之间的映射字典
np.random.seed(7)
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# create mapping of characters to integers (0-25) and the reverse
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))

#构建模型样本,序列长度最大为5,1000个训练样本
num_inputs = 1000
max_len = 5
dataX = []
dataY = []
for i in range(num_inputs):
    start = np.random.randint(len(alphabet)-2)
    end = np.random.randint(start, min(start+max_len,len(alphabet)-1))
    sequence_in = alphabet[start:end+1]
    sequence_out = alphabet[end + 1]
    dataX.append([char_to_int[char] for char in sequence_in])
    dataY.append(char_to_int[sequence_out])
    print (sequence_in, '->', sequence_out)

# convert list of lists to array and pad sequences if needed
X = pad_sequences(dataX, maxlen=max_len, dtype='float32')
# reshape X to be [samples, time steps, features]
X = np.reshape(X, (X.shape[0], max_len, 1))
# normalize
X = X / float(len(alphabet))
# one hot encode the output variable
y = np_utils.to_categorical(dataY,26)

#构建并运行模型
batch_size = 1
model = Sequential()
model.add(LSTM(32, input_shape=(X.shape[1], 1),return_sequences=True))
model.add(LSTM(32))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

remote = callbacks.RemoteMonitor(root='http://localhost:9000')
model.fit(X, y, epochs=200, batch_size=batch_size, verbose=2, callbacks=[remote])
# summarize performance of the model
scores = model.evaluate(X, y, verbose=0)
print("Model Accuracy: %.2f%%" % (scores[1]*100))

OUT:

Model Accuracy: 100.00%

模型预测:

#模型预测
for i in range(20):
    pattern_index = np.random.randint(len(dataX))
    pattern = dataX[pattern_index]
    x = pad_sequences([pattern], maxlen=max_len, dtype='float32')
    x = np.reshape(x, (1, max_len, 1))
    x = x / float(len(alphabet))
    prediction = model.predict(x, verbose=0)
    index = np.argmax(prediction)
    result = int_to_char[index]
    seq_in = [int_to_char[value] for value in pattern]
    print (seq_in, "->", result)

OUT:

['J'] -> K
['H', 'I', 'J'] -> K
['E', 'F'] -> G
['K', 'L', 'M'] -> N
['B'] -> C
['C'] -> D
['R', 'S'] -> T
['A', 'B', 'C'] -> D
['C', 'D', 'E'] -> F
['N', 'O', 'P'] -> Q
['C', 'D'] -> E
['L', 'M'] -> N
['F', 'G', 'H', 'I', 'J'] -> K
['N', 'O', 'P', 'Q'] -> R
['C', 'D', 'E', 'F', 'G'] -> H
['A', 'B', 'C'] -> D
['R', 'S', 'T', 'U', 'V'] -> W
['B', 'C', 'D'] -> E
['F', 'G'] -> H
['K'] -> L

可以看出随便输入长度不超过5的序列,都能正确预测下一个字母,不用再不停手动重置状态。

import pandas as pd
def predict(seq='A'):
    seq_in=[s for s in seq if 'A'<=s<='Z']
    x=pd.Series(seq_in).map(char_to_int)
    if len(x)==0:
        return ''
    else:
        x = pad_sequences([x], maxlen=max_len, dtype='float32')
        x = np.reshape(x, (1, max_len, 1))
        x = x / float(len(alphabet))
        prediction = model.predict(x, verbose=0)
        index = np.argmax(prediction)
        result = int_to_char[index]
        print (seq_in, "->", result)
predict('OP')

OUT:
['O', 'P'] -> Q

原文地址:https://www.cnblogs.com/gczr/p/13414964.html