volley4--RequestQueue

源码:

  1 /*
  2  * Copyright (C) 2011 The Android Open Source Project
  3  *
  4  * Licensed under the Apache License, Version 2.0 (the "License");
  5  * you may not use this file except in compliance with the License.
  6  * You may obtain a copy of the License at
  7  *
  8  *      http://www.apache.org/licenses/LICENSE-2.0
  9  *
 10  * Unless required by applicable law or agreed to in writing, software
 11  * distributed under the License is distributed on an "AS IS" BASIS,
 12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 13  * See the License for the specific language governing permissions and
 14  * limitations under the License.
 15  */
 16 
 17 package com.android.volley;
 18 
 19 import android.os.Handler;
 20 import android.os.Looper;
 21 
 22 import java.util.ArrayList;
 23 import java.util.HashMap;
 24 import java.util.HashSet;
 25 import java.util.LinkedList;
 26 import java.util.List;
 27 import java.util.Map;
 28 import java.util.Queue;
 29 import java.util.Set;
 30 import java.util.concurrent.PriorityBlockingQueue;
 31 import java.util.concurrent.atomic.AtomicInteger;
 32 
 33 /**
 34  * A request dispatch queue with a thread pool of dispatchers.
 35  *
 36  * Calling {@link #add(Request)} will enqueue the given Request for dispatch,
 37  * resolving from either cache or network on a worker thread, and then delivering
 38  * a parsed response on the main thread.
 39  */
 40 public class RequestQueue {
 41 
 42     /** Callback interface for completed requests. */
 43     public static interface RequestFinishedListener<T> {
 44         /** Called when a request has finished processing. */
 45         public void onRequestFinished(Request<T> request);
 46     }
 47 
 48     /** Used for generating monotonically-increasing sequence numbers for requests. */
 49     private AtomicInteger mSequenceGenerator = new AtomicInteger();
 50 
 51     /**
 52      * Staging area for requests that already have a duplicate request in flight.
 53      *
 54      * <ul>
 55      *     <li>containsKey(cacheKey) indicates that there is a request in flight for the given cache
 56      *          key.</li>
 57      *     <li>get(cacheKey) returns waiting requests for the given cache key. The in flight request
 58      *          is <em>not</em> contained in that list. Is null if no requests are staged.</li>
 59      * </ul>
 60      */
 61     private final Map<String, Queue<Request<?>>> mWaitingRequests =
 62             new HashMap<String, Queue<Request<?>>>();
 63 
 64     /**
 65      * The set of all requests currently being processed by this RequestQueue. A Request
 66      * will be in this set if it is waiting in any queue or currently being processed by
 67      * any dispatcher.
 68      */
 69     private final Set<Request<?>> mCurrentRequests = new HashSet<Request<?>>();
 70 
 71     /** The cache triage queue. */
 72     private final PriorityBlockingQueue<Request<?>> mCacheQueue =
 73         new PriorityBlockingQueue<Request<?>>();
 74 
 75     /** The queue of requests that are actually going out to the network. */
 76     private final PriorityBlockingQueue<Request<?>> mNetworkQueue =
 77         new PriorityBlockingQueue<Request<?>>();
 78 
 79     /** Number of network request dispatcher threads to start. */
 80     private static final int DEFAULT_NETWORK_THREAD_POOL_SIZE = 4;
 81 
 82     /** Cache interface for retrieving and storing responses. */
 83     private final Cache mCache;
 84 
 85     /** Network interface for performing requests. */
 86     private final Network mNetwork;
 87 
 88     /** Response delivery mechanism. */
 89     private final ResponseDelivery mDelivery;
 90 
 91     /** The network dispatchers. */
 92     private NetworkDispatcher[] mDispatchers;
 93 
 94     /** The cache dispatcher. */
 95     private CacheDispatcher mCacheDispatcher;
 96 
 97     private List<RequestFinishedListener> mFinishedListeners =
 98             new ArrayList<RequestFinishedListener>();
 99 
100     /**
101      * Creates the worker pool. Processing will not begin until {@link #start()} is called.
102      *
103      * @param cache A Cache to use for persisting responses to disk
104      * @param network A Network interface for performing HTTP requests
105      * @param threadPoolSize Number of network dispatcher threads to create
106      * @param delivery A ResponseDelivery interface for posting responses and errors
107      */
108     public RequestQueue(Cache cache, Network network, int threadPoolSize,
109             ResponseDelivery delivery) {
110         mCache = cache;
111         mNetwork = network;
112         mDispatchers = new NetworkDispatcher[threadPoolSize];
113         mDelivery = delivery;
114     }
115 
116     /**
117      * Creates the worker pool. Processing will not begin until {@link #start()} is called.
118      *
119      * @param cache A Cache to use for persisting responses to disk
120      * @param network A Network interface for performing HTTP requests
121      * @param threadPoolSize Number of network dispatcher threads to create
122      */
123     public RequestQueue(Cache cache, Network network, int threadPoolSize) {
124         this(cache, network, threadPoolSize,
125                 new ExecutorDelivery(new Handler(Looper.getMainLooper())));
126     }
127 
128     /**
129      * Creates the worker pool. Processing will not begin until {@link #start()} is called.
130      *
131      * @param cache A Cache to use for persisting responses to disk
132      * @param network A Network interface for performing HTTP requests
133      */
134     public RequestQueue(Cache cache, Network network) {
135         this(cache, network, DEFAULT_NETWORK_THREAD_POOL_SIZE);
136     }
137 
138     /**
139      * Starts the dispatchers in this queue.
140      */
141     public void start() {
142         stop();  // Make sure any currently running dispatchers are stopped.
143         // Create the cache dispatcher and start it.
144         mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
145         mCacheDispatcher.start();
146 
147         // Create network dispatchers (and corresponding threads) up to the pool size.
148         for (int i = 0; i < mDispatchers.length; i++) {
149             NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
150                     mCache, mDelivery);
151             mDispatchers[i] = networkDispatcher;
152             networkDispatcher.start();
153         }
154     }
155 
156     /**
157      * Stops the cache and network dispatchers.
158      */
159     public void stop() {
160         if (mCacheDispatcher != null) {
161             mCacheDispatcher.quit();
162         }
163         for (int i = 0; i < mDispatchers.length; i++) {
164             if (mDispatchers[i] != null) {
165                 mDispatchers[i].quit();
166             }
167         }
168     }
169 
170     /**
171      * Gets a sequence number.
172      */
173     public int getSequenceNumber() {
174         return mSequenceGenerator.incrementAndGet();
175     }
176 
177     /**
178      * Gets the {@link Cache} instance being used.
179      */
180     public Cache getCache() {
181         return mCache;
182     }
183 
184     /**
185      * A simple predicate or filter interface for Requests, for use by
186      * {@link RequestQueue#cancelAll(RequestFilter)}.
187      */
188     public interface RequestFilter {
189         public boolean apply(Request<?> request);
190     }
191 
192     /**
193      * Cancels all requests in this queue for which the given filter applies.
194      * @param filter The filtering function to use
195      */
196     public void cancelAll(RequestFilter filter) {
197         synchronized (mCurrentRequests) {
198             for (Request<?> request : mCurrentRequests) {
199                 if (filter.apply(request)) {
200                     request.cancel();
201                 }
202             }
203         }
204     }
205 
206     /**
207      * Cancels all requests in this queue with the given tag. Tag must be non-null
208      * and equality is by identity.
209      */
210     public void cancelAll(final Object tag) {
211         if (tag == null) {
212             throw new IllegalArgumentException("Cannot cancelAll with a null tag");
213         }
214         cancelAll(new RequestFilter() {
215             @Override
216             public boolean apply(Request<?> request) {
217                 return request.getTag() == tag;
218             }
219         });
220     }
221 
222     /**
223      * Adds a Request to the dispatch queue.
224      * @param request The request to service
225      * @return The passed-in request
226      */
227     public <T> Request<T> add(Request<T> request) {
228         // Tag the request as belonging to this queue and add it to the set of current requests.
229         request.setRequestQueue(this);
230         synchronized (mCurrentRequests) {
231             mCurrentRequests.add(request);
232         }
233 
234         // Process requests in the order they are added.
235         request.setSequence(getSequenceNumber());
236         request.addMarker("add-to-queue");
237 
238         // If the request is uncacheable, skip the cache queue and go straight to the network.
239         if (!request.shouldCache()) {
240             mNetworkQueue.add(request);
241             return request;
242         }
243 
244         // Insert request into stage if there's already a request with the same cache key in flight.
245         synchronized (mWaitingRequests) {
246             String cacheKey = request.getCacheKey();
247             if (mWaitingRequests.containsKey(cacheKey)) {
248                 // There is already a request in flight. Queue up.
249                 Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);
250                 if (stagedRequests == null) {
251                     stagedRequests = new LinkedList<Request<?>>();
252                 }
253                 stagedRequests.add(request);
254                 mWaitingRequests.put(cacheKey, stagedRequests);
255                 if (VolleyLog.DEBUG) {
256                     VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);
257                 }
258             } else {
259                 // Insert 'null' queue for this cacheKey, indicating there is now a request in
260                 // flight.
261                 mWaitingRequests.put(cacheKey, null);
262                 mCacheQueue.add(request);
263             }
264             return request;
265         }
266     }
267 
268     /**
269      * Called from {@link Request#finish(String)}, indicating that processing of the given request
270      * has finished.
271      *
272      * <p>Releases waiting requests for <code>request.getCacheKey()</code> if
273      *      <code>request.shouldCache()</code>.</p>
274      */
275     <T> void finish(Request<T> request) {
276         // Remove from the set of requests currently being processed.
277         synchronized (mCurrentRequests) {
278             mCurrentRequests.remove(request);
279         }
280         synchronized (mFinishedListeners) {
281           for (RequestFinishedListener<T> listener : mFinishedListeners) {
282             listener.onRequestFinished(request);
283           }
284         }
285 
286         if (request.shouldCache()) {
287             synchronized (mWaitingRequests) {
288                 String cacheKey = request.getCacheKey();
289                 Queue<Request<?>> waitingRequests = mWaitingRequests.remove(cacheKey);
290                 if (waitingRequests != null) {
291                     if (VolleyLog.DEBUG) {
292                         VolleyLog.v("Releasing %d waiting requests for cacheKey=%s.",
293                                 waitingRequests.size(), cacheKey);
294                     }
295                     // Process all queued up requests. They won't be considered as in flight, but
296                     // that's not a problem as the cache has been primed by 'request'.
297                     mCacheQueue.addAll(waitingRequests);
298                 }
299             }
300         }
301     }
302 
303     public  <T> void addRequestFinishedListener(RequestFinishedListener<T> listener) {
304       synchronized (mFinishedListeners) {
305         mFinishedListeners.add(listener);
306       }
307     }
308 
309     /**
310      * Remove a RequestFinishedListener. Has no effect if listener was not previously added.
311      */
312     public  <T> void removeRequestFinishedListener(RequestFinishedListener<T> listener) {
313       synchronized (mFinishedListeners) {
314         mFinishedListeners.remove(listener);
315       }
316     }
317 }
RequestQueue

1.

其实RequestQueue里面有两个队列,一个我称为缓存队列mCacheQueue,一个称为网络队列mNetworkQueue

如果请求要求加入缓存队列(例如我们给request设置一个属性ShouldCache,然后提供set方法来设置),将会试图从硬盘缓存中获取数据,如果没有缓存,这个请求将被放入网络队列

如果请求不要求缓存,则直接加入网络队列。

加入队列以后,我们开启线程,从队列中取出请求。

可想而知,我们最好有一个线程CacheDispatcher从缓存队列中取,一个NetworkDispatcher从网络队列中取,然而网络请求往往大量,所以volley实际上有多个线程同时从网络队列中取出请求(这里涉及线程同步,volley使用PriorityBlockingQueue解决)

为什么要先建立几个线程,从队列中取,而不是每个request开启一个线程呢?这样做的好处是避免重复大量创建线程所带来的开销,另外由于所有的request都存在在一个RequestQueue里面,便于我们对request的管理,例如我们要关闭某个request,又或者我们请求了很多相同的request,对应这些操作,我们如果将request分散,是很难统一解决的,所以这样用类似线程池的思想,统一管理线程。

同时,这样做又会带来不利,因为实际请求线程的线程数目是固定的,意味着当request数目大于线程数目时,有的线程将被阻塞,造成效率下降,更多的问题,会在接下来的文章提到。

至于CacheDispatcher和NetworkDispatcher是怎么请求数据的呢?

对于NetworkDispatcher而言,必然是开启网络连接,然后获取数据的(例如url.openConnection),这是我们的常用实现,先不做详细解释(volley对这些实现进行了更详细的封装)

再来考虑,获得结果以后,我们怎么回调。

还是面向对象的思路,volley将响应结果封装成一个repsonse类(和request对应)

对应NetworkDispatcher而言,在它的run()方法里面,取得request以后,根据url请求数据,将数据封装成respsonse对象,再有一个分发器ResponseDelivery分发到对应的request

有人会问?解析到response以后,我们给request设计一个方法(例如将parseRespose(Respsonse respsonse))用于使用response,同时在这个方法内,回调监听器不就好了吗?为什么要多此一举,创建一个分发器呢?

原因是这样更灵活,但是还有一个重要的原因是,注意到我们回调,往往是在主线程中进行的(因为很可能要操作UI),如果我们在NetworkDispatcher(子线程)里面,直接回调,可能造成错误,这是ResponseDelivery存在的另外一个原因。

根据上面的结论,最后来看一张简单的流程图

根据流程分析,我们可以体会到,volley设计框架的基本思路,对比于我们简单的实现,volley的实现方式耦合更加松散,使用面向接口编程,同时使用更多组合方式而不是继承。使用了代理等设计模式,同时提高了线程的利用率。总之volley的架构设计又各种各样的好处。

我在这里介绍几个volley的功能,以及它考虑到的,而我们很可能没有考虑到的问题。这些问题或者说功能上的优势,会伴随着本专栏的深入让大家逐渐体会。


下面从源码角度看RequestQueue类,首先当然是属性

  1 /** 
  2  * A request dispatch queue with a thread pool of dispatchers. 
  3  *  
  4  * Calling {@link #add(Request)} will enqueue the given Request for dispatch, 
  5  * resolving from either cache or network on a worker thread, and then delivering 
  6  * a parsed response on the main thread. 
  7  * 一个拥有线程池的请求队列 
  8  * 调用add()分发,将添加一个用于分发的请求 
  9  * worker线程从缓存或网络获取响应,然后将该响应提供给主线程 
 10  */  
 11 public class RequestQueue {  
 12   
 13     /**  
 14      * Callback interface for completed requests. 
 15      * 任务完成的回调接口  
 16      */  
 17     public static interface RequestFinishedListener<T> {  
 18         /** Called when a request has finished processing. */  
 19         public void onRequestFinished(Request<T> request);  
 20     }  
 21   
 22     /**  
 23      * Used for generating monotonically-increasing sequence numbers for requests. 
 24      * 使用原子类,记录队列中当前的请求数目  
 25      */  
 26     private AtomicInteger mSequenceGenerator = new AtomicInteger();  
 27   
 28     /** 
 29      * Staging area for requests that already have a duplicate request in flight.<br> 
 30      * 等候缓存队列,重复请求集结map,每个queue里面都是相同的请求 
 31      * <ul> 
 32      *     <li>containsKey(cacheKey) indicates that there is a request in flight for the given cache 
 33      *          key.</li> 
 34      *     <li>get(cacheKey) returns waiting requests for the given cache key. The in flight request 
 35      *          is <em>not</em> contained in that list. Is null if no requests are staged.</li> 
 36      * </ul> 
 37      * 如果map里面包含该请求的cachekey,说明已经有相同key的请求在执行 
 38      * get(cacheKey)根据cachekey返回对应的请求 
 39      */  
 40     private final Map<String, Queue<Request<?>>> mWaitingRequests =  
 41             new HashMap<String, Queue<Request<?>>>();  
 42   
 43     /** 
 44      * The set of all requests currently being processed by this RequestQueue. A Request 
 45      * will be in this set if it is waiting in any queue or currently being processed by 
 46      * any dispatcher. 
 47      * 队列当前拥有的所以请求的集合 
 48      * 请求在队列中,或者正被调度,都会在这个集合中 
 49      */  
 50     private final Set<Request<?>> mCurrentRequests = new HashSet<Request<?>>();  
 51   
 52     /**  
 53      * The cache triage queue. 
 54      * 缓存队列  
 55      */  
 56     private final PriorityBlockingQueue<Request<?>> mCacheQueue =  
 57         new PriorityBlockingQueue<Request<?>>();  
 58   
 59     /**  
 60      * The queue of requests that are actually going out to the network. 
 61      * 网络队列,有阻塞和fifo功能  
 62      */  
 63     private final PriorityBlockingQueue<Request<?>> mNetworkQueue =  
 64         new PriorityBlockingQueue<Request<?>>();  
 65   
 66     /**  
 67      * Number of network request dispatcher threads to start. 
 68      * 默认用于调度的线程池数目  
 69      */  
 70     private static final int DEFAULT_NETWORK_THREAD_POOL_SIZE = 4;  
 71   
 72     /**  
 73      * Cache interface for retrieving and storing responses. 
 74      * 缓存  
 75      */  
 76     private final Cache mCache;  
 77   
 78     /**  
 79      * Network interface for performing requests. 
 80      * 执行请求的网络  
 81      */  
 82     private final Network mNetwork;  
 83   
 84     /** Response delivery mechanism. */  
 85     private final ResponseDelivery mDelivery;  
 86   
 87     /**  
 88      * The network dispatchers. 
 89      * 该队列的所有网络调度器  
 90      */  
 91     private NetworkDispatcher[] mDispatchers;  
 92   
 93     /**  
 94      * The cache dispatcher. 
 95      * 缓存调度器  
 96      */  
 97     private CacheDispatcher mCacheDispatcher;  
 98   
 99     /** 
100      * 任务完成监听器队列 
101      */  
102     private List<RequestFinishedListener> mFinishedListeners =  
103             new ArrayList<RequestFinishedListener>();  

属性很多,而且耦合的类也比较多,我挑重要的讲,这里大家只要先记住某个属性是什么就可以,至于它的具体实现我们先不管

1,首先看List<RequestFinishedListener> mFinishedListeners任务完成监听器队列,这个队列保留了很多监听器,这些监听器都是监听RequestQueue请求队列的,而不是监听单独的某个请求。RequestQueue中每个请求完成后,都会回调这个监听队列里面的所有监听器。这是RequestQueue的统一管理的体现。

2,AtomicInteger mSequenceGenerator原子类,对java多线程熟悉的朋友应该知道,这个是为了线程安全而创造的类,不了解的朋友,可以把它认识是int类型,用于记录当前队列中的请求数目

3,PriorityBlockingQueue<Request<?>> mCacheQueue缓存队列,用于存放向请求缓存的request,线程安全,有阻塞功能,也就是说当队列里面没有东西的时候,线程试图从队列取请求,这个线程就会阻塞

4,PriorityBlockingQueue<Request<?>> mNetworkQueue网络队列,用于存放准备发起网络请求的request,功能同上

5,CacheDispatcher mCacheDispatcher缓存调度器,继承了Thread类,本质是一个线程,这个线程将会被开启进入一个死循环,不断从mCacheQueue缓存队列取出请求,然后去缓存Cache中查找结果

6,NetworkDispatcher[] mDispatchers网络调度器数组,继承了Thread类,本质是多个线程,所以线程都将被开启进入死循环,不断从mNetworkQueue网络队列取出请求,然后去网络Network请求数据

7,Set<Request<?>> mCurrentRequests记录队列中的所有请求,也就是上面mCacheQueue缓存队列与mNetworkQueue网络队列的总和,用于统一管理

8,Cache mCache缓存对象,面向对象的思想,把缓存看成一个实体

9,Network mNetwork网络对象,面向对象的思想,把网络看成一个实体

10,ResponseDelivery mDelivery分发器,就是这个分发器,负责把响应发给对应的请求,分发器存在的意义之前已经提到了,主要是为了耦合更加送并且能在主线程中操作UI

11,Map<String, Queue<Request<?>>> mWaitingRequests等候缓存队列,重复请求集结map,每个queue里面都是相同的请求。为什么需要这个map呢?map的key其实是request的url,如果我们有多个请求的url都是相同的,也就是说请求的资源是相同的,volley就把这些请求放入一个队列,在用url做key将队列放入map中。

因为这些请求都是相同的,可以说结果也是相同的。那么我们只要获得一个请求的结果,其他相同的请求,从缓存中取就可以了。

所以等候缓存队列的作用就是,当其中的一个request获得响应,我们就将这个队列放入缓存队列mCacheQueue中,让这些request去缓存获取结果就好了。

这是volley处理重复请求的思路。

其实看懂上面的属性就可以了解RequestQueue类的作用,大家结合上面的属性,看一下流程图

ok,我们还是从构造函数开始看起吧

/** 
     * Creates the worker pool. Processing will not begin until {@link #start()} is called. 
     * 创建一个工作池,在调用start()方法以后,开始执行 
     * @param cache A Cache to use for persisting responses to disk 
     * @param network A Network interface for performing HTTP requests 
     * @param threadPoolSize Number of network dispatcher threads to create 
     * @param delivery A ResponseDelivery interface for posting responses and errors 
     */  
    public RequestQueue(Cache cache, Network network, int threadPoolSize,  
            ResponseDelivery delivery) {  
        mCache = cache;//缓存,用于保留响应到硬盘  
        mNetwork = network;//网络接口,用于执行http请求  
        mDispatchers = new NetworkDispatcher[threadPoolSize];//根据线程池大小,创建调度器数组  
        mDelivery = delivery;//一个分发接口,用于响应和错误  
    }  
  
    /** 
     * Creates the worker pool. Processing will not begin until {@link #start()} is called. 
     * 
     * @param cache A Cache to use for persisting responses to disk 
     * @param network A Network interface for performing HTTP requests 
     * @param threadPoolSize Number of network dispatcher threads to create 
     */  
    public RequestQueue(Cache cache, Network network, int threadPoolSize) {  
        this(cache, network, threadPoolSize,  
                new ExecutorDelivery(new Handler(Looper.getMainLooper())));  
    }

对于RequestQueue来说,必须有的参数是缓存,网络,分发器,网络线程的数目

对应上面的属性可以知道,原来这些东西都是外部传进来的,参照本专栏的开篇,可以知道,是在Volley这个类里面传进来的,同时在外部,我们也是通过Volley.newRequestQueue()方法来创建并且开启queue队列的。

紧接着来看start()方法,这个方法用于启动队列

 1 /** 
 2      * Starts the dispatchers in this queue. 
 3      */  
 4     public void start() {  
 5         stop();  //保证当前所有运行的分发停止 Make sure any currently running dispatchers are stopped.  
 6         // Create the cache dispatcher and start it.  
 7         //创建新的缓存调度器,并且启动它  
 8         mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);  
 9         mCacheDispatcher.start();  
10   
11         // Create network dispatchers (and corresponding threads) up to the pool size.  
12         //创建网络调度器,并且启动它们  
13         for (int i = 0; i < mDispatchers.length; i++) {  
14             NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,  
15                     mCache, mDelivery);  
16             mDispatchers[i] = networkDispatcher;  
17             networkDispatcher.start();  
18         }  

可以看到,所谓启动队列,就是创建了CacheDispatcher缓存调度器,和mDispatchers[]网络调度器数组,根据前面的介绍我们知道,它们都是线程,所以start()方法里面,其实就是调用了它们的start()方法。也就是说RequestQueue启动的本质,是这些调度器的启动,这些调度器启动以后,会进入死循环,不断从队列中取出request来进行数据请求。

由于Dispatcher调度器的数目有限(是根据我们给构造方法传入的参数threadPoolSize决定的),意味着Volley框架,同时在执行数据请求的线程数目是有限的,这样避免了重复创建线程所带来的开销,同时可能会带来效率的下降。

所以threadPoolSize对不同的应用,设置的大小大家不同,大家要根据自己项目实际情况,经过测试来确定这个值。

说完开启,我们再来看RequestQueue的关闭

 1 /** 
 2      * Stops the cache and network dispatchers. 
 3      * 停止调度器(包括缓存和网络) 
 4      */  
 5     public void stop() {  
 6         if (mCacheDispatcher != null) {  
 7             mCacheDispatcher.quit();  
 8         }  
 9         for (int i = 0; i < mDispatchers.length; i++) {  
10             if (mDispatchers[i] != null) {  
11                 mDispatchers[i].quit();  
12             }  
13         }  
14     }  

对比开启,其实stop()的本质也是关闭所有的调度器,调用了它们的quit()方法,至于这个方法做的是什么,很容易想到,是把它们内部while循环的标志设成false

再来看add()方法,这方法用于将request加入队列,也是一个非常重要方法

 1 /** 
 2      * Adds a Request to the dispatch queue. 
 3      * @param request The request to service 
 4      * @return The passed-in request 
 5      * 向请求队列添加请求 
 6      */  
 7     public <T> Request<T> add(Request<T> request) {  
 8         // Tag the request as belonging to this queue and add it to the set of current requests.  
 9         request.setRequestQueue(this);//为请求设置其请求队列  
10         synchronized (mCurrentRequests) {  
11             mCurrentRequests.add(request);  
12         }  
13   
14         // Process requests in the order they are added.  
15         request.setSequence(getSequenceNumber());//设置请求序号  
16         request.addMarker("add-to-queue");  
17   
18         // If the request is uncacheable, skip the cache queue and go straight to the network.  
19         //如果该请求不缓存,添加到网络队列  
20         if (!request.shouldCache()) {  
21             mNetworkQueue.add(request);  
22             return request;  
23         }  
24         //如果该请求要求缓存  
25         // Insert request into stage if there's already a request with the same cache key in flight.  
26         synchronized (mWaitingRequests) {  
27             String cacheKey = request.getCacheKey();  
28             if (mWaitingRequests.containsKey(cacheKey)) {  
29                 // There is already a request in flight. Queue up.  
30                 //如果已经有一个请求在工作,则排队等候  
31                 Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);  
32                 if (stagedRequests == null) {  
33                     stagedRequests = new LinkedList<Request<?>>();  
34                 }  
35                 stagedRequests.add(request);  
36                 mWaitingRequests.put(cacheKey, stagedRequests);  
37                 if (VolleyLog.DEBUG) {  
38                     VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);  
39                 }  
40             } else {  
41                 // Insert 'null' queue for this cacheKey, indicating there is now a request in  
42                 // flight.  
43                 //为该key插入null,表明现在有一个请求在工作  
44                 mWaitingRequests.put(cacheKey, null);  
45                 mCacheQueue.add(request);  
46             }  
47             return request;  
48         }  
49     }  

对于一个request而言,首先它会被加入mCurrentRequests,这是用于request的统一管理

然后,调用shouldCache()判断是从缓存中取还是网络请求,如果是网络请求,则加入mNetworkQueue,然后改方法返回

如果请求缓存,根据mWaitingRequests是否已经有相同的请求在进行,如果是,则将该request加入mWaitingRequests

如果不是,则将request加入mCacheQueue去进行缓存查询

到目前为止,我们知道了调度器会从队列里面拿请求,至于具体是怎么请求的,我们还不清楚。这也体现了volley设计的合理性,通过组合来分配各个职责,每个类的职责都比较单一。

我们提到,RequestQueue的一个重要作用,就是对request的统一管理,其实所谓的管理,更多是对request的关闭,下面我来看一下这些方法

 1 /** 
 2      * Called from {@link Request#finish(String)}, indicating that processing of the given request 
 3      * has finished. 
 4      * 在request类的finish()方法里面,会调用这个方法,说明该请求结束 
 5      * <p>Releases waiting requests for <code>request.getCacheKey()</code> if 
 6      *      <code>request.shouldCache()</code>.</p> 
 7      */  
 8     public <T> void finish(Request<T> request) {  
 9         // Remove from the set of requests currently being processed.  
10         synchronized (mCurrentRequests) {//从当前请求队列中移除  
11             mCurrentRequests.remove(request);  
12         }  
13         synchronized (mFinishedListeners) {//回调监听器  
14           for (RequestFinishedListener<T> listener : mFinishedListeners) {  
15             listener.onRequestFinished(request);  
16           }  
17         }  
18   
19         if (request.shouldCache()) {//如果该请求要被缓存  
20             synchronized (mWaitingRequests) {  
21                 String cacheKey = request.getCacheKey();  
22                 Queue<Request<?>> waitingRequests = mWaitingRequests.remove(cacheKey);//移除该缓存  
23                 if (waitingRequests != null) {//如果存在缓存等候队列  
24                     if (VolleyLog.DEBUG) {  
25                         VolleyLog.v("Releasing %d waiting requests for cacheKey=%s.",  
26                                 waitingRequests.size(), cacheKey);  
27                     }  
28                     // Process all queued up requests. They won't be considered as in flight, but  
29                     // that's not a problem as the cache has been primed by 'request'.  
30                     // 处理所有队列中的请求                      
31                     mCacheQueue.addAll(waitingRequests);//  
32                 }  
33             }  
34         }  
35     }  

finish()用于表示某个特定的request完成了,只有将要完成的request传进来就好了,然后会在各个队列中移除它

这里需要注意,一个request完成以后,会将waitingRequests里面所有相同的请求,都加入到mCacheQueue缓存队列中,这就意味着,这些请求从缓存中取出结果就好了,这样就避免了频繁相同网络请求的开销。这也是Volley的亮点之一。

然后我们再来看一些取消方法

 1 /** 
 2      * A simple predicate or filter interface for Requests, for use by 
 3      * {@link RequestQueue#cancelAll(RequestFilter)}. 
 4      * 一个简单的过滤接口,在cancelAll()方法里面被使用 
 5      */  
 6     public interface RequestFilter {  
 7         public boolean apply(Request<?> request);  
 8     }  
 9   
10     /** 
11      * Cancels all requests in this queue for which the given filter applies. 
12      * @param filter The filtering function to use 
13      * 根据过滤器规则,取消相应请求 
14      */  
15     public void cancelAll(RequestFilter filter) {  
16         synchronized (mCurrentRequests) {  
17             for (Request<?> request : mCurrentRequests) {  
18                 if (filter.apply(request)) {  
19                     request.cancel();  
20                 }  
21             }  
22         }  
23     }  
24   
25     /** 
26      * Cancels all requests in this queue with the given tag. Tag must be non-null 
27      * and equality is by identity. 
28      * 根据标记取消相应请求 
29      */  
30     public void cancelAll(final Object tag) {  
31         if (tag == null) {  
32             throw new IllegalArgumentException("Cannot cancelAll with a null tag");  
33         }  
34         cancelAll(new RequestFilter() {  
35             @Override  
36             public boolean apply(Request<?> request) {  
37                 return request.getTag() == tag;  
38             }  
39         });  
40     }  

上面的设计可以说是非常巧妙的,为了增加取消的灵活性,创建了一个RequestFilter来自定义取消request的规则

在cancelAll(RequestFilter filter)方法里面,我们传入过滤器,就可以根据需要取消我想要取消的一类request,这种形式类似文件遍历的FileFilter

而这种形式,volley还为我们提供了一个具体的实现cancelAll(final Object tag),来根据标签取消request,这里我们也就明白了request<T>类中mTag属性的用处了

可以说volley处处都体现了设计模式的美感。

Ok,RequestQueue介绍到这里,就介绍了整个的基本结构,剩下的困惑,是CacheDispatcher,networkDispatcher怎么从队列里面取出request的问题了,但是这些问题跟队列的关系没有那么紧,也就是说具体实现的任务,又交到了这两个类的身上,总而言之,这里也体现了单一责任原则。

接下来的文章,将会分类讲述这两个功能的实现。

原文地址:https://www.cnblogs.com/ganchuanpu/p/7627160.html