无穷积分换元法的严格解释

书上的无穷积分换元法是这样叙述的:
命题1:
设$f$在$[a,+infty)$上有定义且连续,且对于$forall X>a$,$f$在区间$[a,X]$上可积,再设函数$varphi(t)$在区间$[alpha,eta)$上可导且单调上升,且导数连续,并且满足对$t in [alpha,eta)$有$a = varphi(a) le varphi(t) $,则有以下换元公式:
[ int_a^{+infty} f(x) ext{d} x = int_alpha^eta f(varphi(t))varphi'(t) ext{d} t ]

叙述得十分模糊,特别是右边$displaystyle int_alpha^eta f(varphi(t))varphi'(t) ext{d} t$在$eta$处根本没有定义,该如何理解?现严密的叙述如下:

命题2:
设$f$在$[a,+infty)$上有定义且连续,且对于$forall X>a$,$f$在区间$[a,X]$上可积,再设函数$varphi(t)$在区间$[alpha,eta)$上可导且单调上升,且导数连续,并且满足对$t in [alpha,eta)$有$a = varphi(a) le varphi(t) $,从而$f(varphi(t))varphi'(t)$在$[alpha,eta)$上连续,从而对于$forall 0<delta<eta - alpha,f(varphi(t))varphi'(t)$在$[alpha,eta-delta]$上连续,从而可积.分以下两种情况

(1)若$eta$是$f(varphi(t))varphi'(t)$的瑕点,则无穷积分$ displaystyle int_a^{+infty} f(x) ext{d} x$收敛当且仅当瑕积分$displaystyle int_alpha^eta f(varphi(t))varphi'(t) ext{d} t$收敛,且若它们收敛时,有
[ int_a^{+infty} f(x) ext{d} x = int_alpha^eta f(varphi(t))varphi'(t) ext{d} t ]

(2)若$eta$不是$f(varphi(t))varphi'(t)$的瑕点,则$f(varphi(t))varphi'(t)$在$[alpha,eta)$上有界,任给$varphi(eta)$赋一个值.则$f(varphi(t))varphi'(t)$在$[alpha,eta]$上有界,且可积(由于至多只有一个间断点$eta$).此时,无穷积分$ displaystyle int_a^{+infty} f(x) ext{d} x$ 存在,且
[ int_a^{+infty} f(x) ext{d} x = int_alpha^eta f(varphi(t))varphi'(t) ext{d} t ]
注意到$varphi(eta)$的取值不影响上式右端定积分的值.
特别地,如果$displaystyle lim_{t o eta-0}f(varphi(t))varphi'(t)$存在且有限,记为$A$,补充定义$f(varphi(eta))varphi'(eta) = A$,则$f(varphi(t))varphi'(t)$ 在$[alpha,eta]$连续.且仍有
[ int_a^{+infty} f(x) ext{d} x = int_alpha^eta f(varphi(t))varphi'(t) ext{d} t ]

注:可去掉$f$在$[a,+infty)$上连续的条件.而证明过程几乎一样,只需额外说明$f(varphi(t))$在$[a,X]$可积即可,由$varphi$的单调性,这是容易得到的.

原文地址:https://www.cnblogs.com/focuslucas/p/6526318.html