两种计算Java对象大小的方法

之前想研究一下unsafe类,碰巧在网上看到了这篇文章,觉得写得很好,就转载过来。原文出处是: http://blog.csdn.net/iter_zc/article/details/41822719

1 基础知识

普通对象的结构如下,按64位机器的长度计算 1. 对象头(_mark), 8个字节 2. Oop指针,如果是32G内存以下的,默认开启对象指针压缩,4个字节 3. 数据区 4. Padding(内存对齐),按照8的倍数对齐

数组对象结构是 1. 对象头(_mark), 8个字节 2. Oop指针,如果是32G内存以下的,默认开启对象指针压缩,4个字节 3. 数组长度,4个字节 4. 数据区 5. Padding(内存对齐),按照8的倍数对齐

这里写图片描述

清楚了对象在内存的基本布局后,咱们说两种计算Java对象大小的方法

  1. 通过java.lang.instrument.Instrumentation的getObjectSize(obj)直接获取对象的大小
  2. 通过sun.misc.Unsafe对象的objectFieldOffset(field)等方法结合反射来计算对象的大小

2 instrument的getObjectSize(obj)

先讲讲java.lang.instrument.Instrumentation.getObjectSize()的方式,这种方法得到的是Shallow Size,即遇到引用时,只计算引用的长度,不计算所引用的对象的实际大小。如果要计算所引用对象的实际大小,可以通过递归的方式去计算。

java.lang.instrument.Instrumentation的实例必须通过指定javaagent的方式才能获得,具体的步骤如下: 1. 定义一个类,提供一个premain方法: public static void premain(String agentArgs, Instrumentation instP) 2. 创建META-INF/MANIFEST.MF文件,内容是指定PreMain的类是哪个: Premain-Class: sizeof.ObjectShallowSize 3. 把这个类打成jar,然后用java -javaagent XXXX.jar XXX.main的方式执行

下面先定义一个类来获得java.lang.instrument.Instrumentation的实例,并提供了一个static的sizeOf方法对外提供Instrumentation的能力

package sizeof;  

import java.lang.instrument.Instrumentation;  

public class ObjectShallowSize {  
    private static Instrumentation inst;  

    public static void premain(String agentArgs, Instrumentation instP){  
        inst = instP;  
    }  

    public static long sizeOf(Object obj){  
        return inst.getObjectSize(obj);  
    }  
}  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

定义META-INF/MANIFEST.MF文件

Premain-Class: sizeof.ObjectShallowSize
  • 1

打成jar包

cd 编译后的类和META-INF文件夹所在目录  
jar cvfm java-agent-sizeof.jar META-INF/MANIFEST.MF  
  • 1
  • 2

准备好了这个jar之后,我们可以写测试类来测试Instrumentation的getObjectSize方法了。在这之前我们先来看对象在内存中是按照什么顺序排列的

有如下这个类,字段的定义按如下顺序

private static class ObjectA {  
        String str;  // 4  
        int i1; // 4  
        byte b1; // 1  
        byte b2; // 1  
        int i2;  // 4   
        ObjectB obj; //4  
        byte b3;  // 1  
}  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

按照我们之前说的方法来计算一下这个对象所占大小,注意按8对齐 8(_mark) + 4(oop指针) + 4(str) + 4(i1) + 1(b1) + 1(b2) + 2(padding) + 4(i2) + 4(obj) + 1(b3) + 7(padding) = 40 ?

但事实上是这样的吗? 我们来用Instrumentation的getObjectSize来计算一下先:

package test;  

import sizeof.ObjectShallowSize;  

public class SizeofWithInstrumetation {  
    private static class ObjectA {  
        String str;  // 4  
        int i1; // 4  
        byte b1; // 1  
        byte b2; // 1  
        int i2;  // 4   
        ObjectB obj; //4  
        byte b3;  // 1  
    }  

    private static class ObjectB {  

    }  

    public static void main(String[] args){  
        System.out.println(ObjectShallowSize.sizeOf(new ObjectA()));  
    }  
}  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

得到的结果是32!不是会按8对齐吗,b3之前的数据加起来已经是32了,多了1个b3,为33,应该对齐到40才对啊。事实上,HotSpot创建的对象的字段会先按照给定顺序排列一下,默认的顺序如下,从长到短排列,引用排最后:  long/double –> int/float –>  short/char –> byte/boolean –> Reference

这个顺序可以使用JVM参数:  -XX:FieldsAllocationSylte=0(默认是1)来改变。

我们使用sun.misc.Unsafe对象的objectFieldOffset方法来验证一下:

Field[] fields = ObjectA.class.getDeclaredFields();  
        for(Field f: fields){  
            System.out.println(f.getName() + " offset: " +unsafe.objectFieldOffset(f));  
        }  
  • 1
  • 2
  • 3
  • 4

这里写图片描述

可以看到确实是按照从长到短,引用排最后的方式在内存中排列的。按照这种方法我们来重新计算下ObjectA创建的对象的长度:

8(_mark) + 4(oop指针) + 4(i1) + + 4(i2) + 1(b1) + 1(b2) + 1(b3) + 1(padding) +  4(str) + 4(obj) = 32 得到的结果和java.lang.instrument.Instrumentation.getObjectSize()的结果是一样的,证明我们的计算方式是正确的。

3 sun.misc.Unsafe的方式

下面说一下通过sun.misc.Unsafe对象的objectFieldOffset(field)等方法结合反射来计算对象的大小。基本的思路如下: 1. 通过反射获得一个类的Field 2. 通过Unsafe的objectFieldOffset()获得每个Field的offSet 3. 对Field按照offset排序,取得最大的offset,然后加上这个field的长度,再加上Padding对齐

上面三步就可以获得一个对象的Shallow size。可以进一步通过递归去计算所引用对象的大小,从而可以计算出一个对象所占用的实际大小。

如何获得Unsafe对象已经在这篇中聊聊序列化(二)使用sun.misc.Unsafe绕过new机制来创建Java对象说过了,可以通过反射的机制来获得.

Oop指针是4还是未压缩的8也可以通过unsafe.arrayIndexScale(Object[].class)来获得,这个方法返回一个引用所占用的长度

static {  
        try {  
            Field field = Unsafe.class.getDeclaredField("theUnsafe");  
            field.setAccessible(true);  
            unsafe = (Unsafe) field.get(null);  

            objectRefSize = unsafe.arrayIndexScale(Object[].class);  
        } catch (Exception e) {  
            throw new RuntimeException(e);  
        }  
    }  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

下面的源码摘自 http://java-performance.info/memory-introspection-using-sun-misc-unsafe-and-reflection/, 原文中的代码在计算对象大小的时候有问题,我做了微调,并加上了内存对齐的方法,这样计算出的结果和Instrumentation的getObjectSize方法是一样的。

package test;  

import java.util.ArrayList;  
import java.util.Collections;  
import java.util.Comparator;  
import java.util.List;  

/** 
 * This class contains object info generated by ClassIntrospector tool 
 */  
public class ObjectInfo {  
    /** Field name */  
    public final String name;  
    /** Field type name */  
    public final String type;  
    /** Field data formatted as string */  
    public final String contents;  
    /** Field offset from the start of parent object */  
    public final int offset;  
    /** Memory occupied by this field */  
    public final int length;  
    /** Offset of the first cell in the array */  
    public final int arrayBase;  
    /** Size of a cell in the array */  
    public final int arrayElementSize;  
    /** Memory occupied by underlying array (shallow), if this is array type */  
    public final int arraySize;  
    /** This object fields */  
    public final List<ObjectInfo> children;  

    public ObjectInfo(String name, String type, String contents, int offset, int length, int arraySize,  
    int arrayBase, int arrayElementSize)  
    {  
        this.name = name;  
        this.type = type;  
        this.contents = contents;  
        this.offset = offset;  
        this.length = length;  
        this.arraySize = arraySize;  
        this.arrayBase = arrayBase;  
        this.arrayElementSize = arrayElementSize;  
        children = new ArrayList<ObjectInfo>( 1 );  
    }  

    public void addChild( final ObjectInfo info )  
    {  
        if ( info != null )  
            children.add( info );  
    }  

    /** 
    * Get the full amount of memory occupied by a given object. This value may be slightly less than 
    * an actual value because we don't worry about memory alignment - possible padding after the last object field. 
    * 
    * The result is equal to the last field offset + last field length + all array sizes + all child objects deep sizes 
    * @return Deep object size 
    */  
    public long getDeepSize()  
    {  
        //return length + arraySize + getUnderlyingSize( arraySize != 0 );  
        return addPaddingSize(arraySize + getUnderlyingSize( arraySize != 0 ));  
    }  

    long size = 0;  

    private long getUnderlyingSize( final boolean isArray )  
    {  
        //long size = 0;  
        for ( final ObjectInfo child : children )  
            size += child.arraySize + child.getUnderlyingSize( child.arraySize != 0 );  
        if ( !isArray && !children.isEmpty() ){  
            int tempSize = children.get( children.size() - 1 ).offset + children.get( children.size() - 1 ).length;  
            size += addPaddingSize(tempSize);  
        }  

        return size;  
    }  

    private static final class OffsetComparator implements Comparator<ObjectInfo>  
    {  
        @Override  
        public int compare( final ObjectInfo o1, final ObjectInfo o2 )  
        {  
            return o1.offset - o2.offset; //safe because offsets are small non-negative numbers  
        }  
    }  

    //sort all children by their offset  
    public void sort()  
    {  
        Collections.sort( children, new OffsetComparator() );  
    }  

    @Override  
    public String toString() {  
        final StringBuilder sb = new StringBuilder();  
        toStringHelper( sb, 0 );  
        return sb.toString();  
    }  

    private void toStringHelper( final StringBuilder sb, final int depth )  
    {  
        depth( sb, depth ).append("name=").append( name ).append(", type=").append( type )  
            .append( ", contents=").append( contents ).append(", offset=").append( offset )  
            .append(", length=").append( length );  
        if ( arraySize > 0 )  
        {  
            sb.append(", arrayBase=").append( arrayBase );  
            sb.append(", arrayElemSize=").append( arrayElementSize );  
            sb.append( ", arraySize=").append( arraySize );  
        }  
        for ( final ObjectInfo child : children )  
        {  
            sb.append( '
' );  
            child.toStringHelper(sb, depth + 1);  
        }  
    }  

    private StringBuilder depth( final StringBuilder sb, final int depth )  
    {  
        for ( int i = 0; i < depth; ++i )  
            sb.append( "	");  
        return sb;  
    }  

    private long addPaddingSize(long size){  
        if(size % 8 != 0){  
            return (size / 8 + 1) * 8;  
        }  
        return size;  
    }  

}  


package test;  

import java.lang.reflect.Array;  
import java.lang.reflect.Field;  
import java.lang.reflect.Modifier;  
import java.util.ArrayList;  
import java.util.Arrays;  
import java.util.Collections;  
import java.util.HashMap;  
import java.util.IdentityHashMap;  
import java.util.List;  
import java.util.Map;  

import sun.misc.Unsafe;  

/** 
 * This class could be used for any object contents/memory layout printing. 
 */  
public class ClassIntrospector {  

    private static final Unsafe unsafe;  
    /** Size of any Object reference */  
    private static final int objectRefSize;  
    static {  
        try {  
            Field field = Unsafe.class.getDeclaredField("theUnsafe");  
            field.setAccessible(true);  
            unsafe = (Unsafe) field.get(null);  

            objectRefSize = unsafe.arrayIndexScale(Object[].class);  
        } catch (Exception e) {  
            throw new RuntimeException(e);  
        }  
    }  

    /** Sizes of all primitive values */  
    private static final Map<Class, Integer> primitiveSizes;  

    static {  
        primitiveSizes = new HashMap<Class, Integer>(10);  
        primitiveSizes.put(byte.class, 1);  
        primitiveSizes.put(char.class, 2);  
        primitiveSizes.put(int.class, 4);  
        primitiveSizes.put(long.class, 8);  
        primitiveSizes.put(float.class, 4);  
        primitiveSizes.put(double.class, 8);  
        primitiveSizes.put(boolean.class, 1);  
    }  

    /** 
     * Get object information for any Java object. Do not pass primitives to 
     * this method because they will boxed and the information you will get will 
     * be related to a boxed version of your value. 
     *  
     * @param obj 
     *            Object to introspect 
     * @return Object info 
     * @throws IllegalAccessException 
     */  
    public ObjectInfo introspect(final Object obj)  
            throws IllegalAccessException {  
        try {  
            return introspect(obj, null);  
        } finally { // clean visited cache before returning in order to make  
                    // this object reusable  
            m_visited.clear();  
        }  
    }  

    // we need to keep track of already visited objects in order to support  
    // cycles in the object graphs  
    private IdentityHashMap<Object, Boolean> m_visited = new IdentityHashMap<Object, Boolean>(  
            100);  

    private ObjectInfo introspect(final Object obj, final Field fld)  
            throws IllegalAccessException {  
        // use Field type only if the field contains null. In this case we will  
        // at least know what's expected to be  
        // stored in this field. Otherwise, if a field has interface type, we  
        // won't see what's really stored in it.  
        // Besides, we should be careful about primitives, because they are  
        // passed as boxed values in this method  
        // (first arg is object) - for them we should still rely on the field  
        // type.  
        boolean isPrimitive = fld != null && fld.getType().isPrimitive();  
        boolean isRecursive = false; // will be set to true if we have already  
                                        // seen this object  
        if (!isPrimitive) {  
            if (m_visited.containsKey(obj))  
                isRecursive = true;  
            m_visited.put(obj, true);  
        }  

        final Class type = (fld == null || (obj != null && !isPrimitive)) ? obj  
                .getClass() : fld.getType();  
        int arraySize = 0;  
        int baseOffset = 0;  
        int indexScale = 0;  
        if (type.isArray() && obj != null) {  
            baseOffset = unsafe.arrayBaseOffset(type);  
            indexScale = unsafe.arrayIndexScale(type);  
            arraySize = baseOffset + indexScale * Array.getLength(obj);  
        }  

        final ObjectInfo root;  
        if (fld == null) {  
            root = new ObjectInfo("", type.getCanonicalName(), getContents(obj,  
                    type), 0, getShallowSize(type), arraySize, baseOffset,  
                    indexScale);  
        } else {  
            final int offset = (int) unsafe.objectFieldOffset(fld);  
            root = new ObjectInfo(fld.getName(), type.getCanonicalName(),  
                    getContents(obj, type), offset, getShallowSize(type),  
                    arraySize, baseOffset, indexScale);  
        }  

        if (!isRecursive && obj != null) {  
            if (isObjectArray(type)) {  
                // introspect object arrays  
                final Object[] ar = (Object[]) obj;  
                for (final Object item : ar)  
                    if (item != null)  
                        root.addChild(introspect(item, null));  
            } else {  
                for (final Field field : getAllFields(type)) {  
                    if ((field.getModifiers() & Modifier.STATIC) != 0) {  
                        continue;  
                    }  
                    field.setAccessible(true);  
                    root.addChild(introspect(field.get(obj), field));  
                }  
            }  
        }  

        root.sort(); // sort by offset  
        return root;  
    }  

    // get all fields for this class, including all superclasses fields  
    private static List<Field> getAllFields(final Class type) {  
        if (type.isPrimitive())  
            return Collections.emptyList();  
        Class cur = type;  
        final List<Field> res = new ArrayList<Field>(10);  
        while (true) {  
            Collections.addAll(res, cur.getDeclaredFields());  
            if (cur == Object.class)  
                break;  
            cur = cur.getSuperclass();  
        }  
        return res;  
    }  

    // check if it is an array of objects. I suspect there must be a more  
    // API-friendly way to make this check.  
    private static boolean isObjectArray(final Class type) {  
        if (!type.isArray())  
            return false;  
        if (type == byte[].class || type == boolean[].class  
                || type == char[].class || type == short[].class  
                || type == int[].class || type == long[].class  
                || type == float[].class || type == double[].class)  
            return false;  
        return true;  
    }  

    // advanced toString logic  
    private static String getContents(final Object val, final Class type) {  
        if (val == null)  
            return "null";  
        if (type.isArray()) {  
            if (type == byte[].class)  
                return Arrays.toString((byte[]) val);  
            else if (type == boolean[].class)  
                return Arrays.toString((boolean[]) val);  
            else if (type == char[].class)  
                return Arrays.toString((char[]) val);  
            else if (type == short[].class)  
                return Arrays.toString((short[]) val);  
            else if (type == int[].class)  
                return Arrays.toString((int[]) val);  
            else if (type == long[].class)  
                return Arrays.toString((long[]) val);  
            else if (type == float[].class)  
                return Arrays.toString((float[]) val);  
            else if (type == double[].class)  
                return Arrays.toString((double[]) val);  
            else  
                return Arrays.toString((Object[]) val);  
        }  
        return val.toString();  
    }  

    // obtain a shallow size of a field of given class (primitive or object  
    // reference size)  
    private static int getShallowSize(final Class type) {  
        if (type.isPrimitive()) {  
            final Integer res = primitiveSizes.get(type);  
            return res != null ? res : 0;  
        } else  
            return objectRefSize;  
    }  
}  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338

先一个测试类来验证一下Unsafe的方式计算出的结果

public class ClassIntrospectorTest  
{  
    public static void main(String[] args) throws IllegalAccessException {  
        final ClassIntrospector ci = new ClassIntrospector();  

        ObjectInfo res;  

        res = ci.introspect( new ObjectA() );  
        System.out.println( res.getDeepSize() );  
    }  

    private static class ObjectA {  
        String str;  // 4  
        int i1; // 4  
        byte b1; // 1  
        byte b2; // 1  
        int i2;  // 4   
        ObjectB obj; //4  
        byte b3;  // 1  
    }  

    private static class ObjectB {  

    }  
}  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

计算结果如下: 32

和我们之前计算结果是一致的,证明是正确的。

最后再来测试一下数组对象的长度。有两个类如下:

private static class ObjectC {  
        ObjectD[] array = new ObjectD[2];  
    }  

    private static class ObjectD {  
        int value;  
    }  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

它们在内存的大体分布如下图:

这里写图片描述

我们可以手工计算一下ObjectC obj = new ObjectC()的大小:

ObjectC的Shallow size = 8(_mark) + 4(oop指针)  + 4(ObjectD[]引用) = 16

new ObjectD[2]数组的长度 =  8(_mark) + 4(oop指针) + 4(数组长度占4个字节) + 4(ObjectD[0]引用) + 4(ObjectD[1]引用) = 24

由于ObjectD[]数组没有指向具体的对象大小,所以我们手工计算的结果是16 + 24 = 40

使用Unsafe对象的方式来计算一下:

public static void main(String[] args) throws IllegalAccessException {  
        final ClassIntrospector ci = new ClassIntrospector();  

        ObjectInfo res;  

        res = ci.introspect( new ObjectC() );  
        System.out.println( res.getDeepSize() );  
    }  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

计算结果如下,和我们计算的结果是一致的,证明是正确的: 40

再给ObjectD[]数组指向具体的ObjectD对象,再测试一下结果:

public static void main(String[] args) throws IllegalAccessException {  
       final ClassIntrospector ci = new ClassIntrospector();  

       ObjectInfo res;  

       res = ci.introspect( new ObjectC() );  
       System.out.println( res.getDeepSize() );  
   }  

   private static class ObjectC {  
    ObjectD[] array = new ObjectD[2];  

    public ObjectC(){  
        array[0] = new ObjectD();  
        array[1] = new ObjectD();  
    }  
   }  

   private static class ObjectD {  
    int value;  
   }  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

我们可以手工计算一下ObjectC obj = new ObjectC()的大小: ObjectC的Shallow size = 8(_mark) + 4(oop指针)  + 4(ObjectD[]引用) = 16

new ObjectD[2]数组的长度 =  8(_mark) + 4(oop指针) + 4(数组长度占4个字节) + 4(ObjectD[0]引用) + 4(ObjectD[1]引用) = 24

ObjectD对象长度 = 8(_mark) + 4(oop指针) + 4(value) = 16

所以ObjectC实际占用的空间 = 16 + 24 + 2 * 16 = 72

使用Unsafe的方式计算的结果也是72,和我们手工计算的方式一致。

原文地址:https://www.cnblogs.com/firstdream/p/8274433.html