贝叶斯2

3. 模型比较与奥卡姆剃刀

3.1 再访拼写纠正

介绍了贝叶斯拼写纠正之后,接下来的一个自然而然的问题就来了:“为什么?”为什么要用贝叶斯公式?为什么贝叶斯公式在这里可以用?我们可以很容易地领会为什么贝叶斯公式用在前面介绍的那个男生女生长裤裙子的问题里是正确的。但为什么这里?

为了回答这个问题,一个常见的思路就是想想:非得这样吗?因为如果你想到了另一种做法并且证明了它也是靠谱的,那么将它与现在这个一比较,也许就能得出很有价值的信息。那么对于拼写纠错问题你能想到其他方案吗?

不管怎样,一个最常见的替代方案就是,选择离 thew 的编辑距离最近的。然而 the 和 thaw 离 thew 的编辑距离都是 1 。这可咋办捏?你说,不慌,那还是好办。我们就看到底哪个更可能被错打为 thew 就是了。我们注意到字母 e 和字母 w 在键盘上离得很紧,无名指一抽筋就不小心多打出一个 w 来,the 就变成 thew 了。而另一方面 thaw 被错打成 thew 的可能性就相对小一点,因为 e 和 a 离得较远而且使用的指头相差一个指头(一个是中指一个是小指,不像 e 和 w 使用的指头靠在一块——神经科学的证据表明紧邻的身体设施之间容易串位)。OK,很好,因为你现在已经是在用最大似然方法了,或者直白一点,你就是在计算那个使得 P(D | h) 最大的 h 。

而贝叶斯方法计算的是什么?是 P(h) * P(D | h) 。多出来了一个 P(h) 。我们刚才说了,这个多出来的 P(h) 是特定猜测的先验概率。为什么要掺和进一个先验概率?刚才说的那个最大似然不是挺好么?很雄辩地指出了 the 是更靠谱的猜测。有什么问题呢?既然这样,我们就从给最大似然找茬开始吧——我们假设两者的似然程度是一样或非常相近,这样不就难以区分哪个猜测更靠谱了吗?比如用户输入tlp ,那到底是 top 还是 tip ?(这个例子不怎么好,因为 top 和 tip 的词频可能仍然是接近的,但一时想不到好的英文单词的例子,我们不妨就假设 top 比 tip 常见许多吧,这个假设并不影响问题的本质。)这个时候,当最大似然不能作出决定性的判断时,先验概率就可以插手进来给出指示——“既然你无法决定,那么我告诉你,一般来说 top 出现的程度要高许多,所以更可能他想打的是 top ”)。

以上只是最大似然的一个问题,即并不能提供决策的全部信息。

最大似然还有另一个问题:即便一个猜测与数据非常符合,也并不代表这个猜测就是更好的猜测,因为这个猜测本身的可能性也许就非常低。比如 MacKay 在《Information Theory : Inference and Learning Algorithms》里面就举了一个很好的例子:-1 3 7 11 你说是等差数列更有可能呢?还是 -X^3 / 11 + 9/11*X^2 + 23/11 每项把前项作为 X 带入后计算得到的数列?此外曲线拟合也是,平面上 N 个点总是可以用 N-1 阶多项式来完全拟合,当 N 个点近似但不精确共线的时候,用 N-1 阶多项式来拟合能够精确通过每一个点,然而用直线来做拟合/线性回归的时候却会使得某些点不能位于直线上。你说到底哪个好呢?多项式?还是直线?一般地说肯定是越低阶的多项式越靠谱(当然前提是也不能忽视“似然”P(D | h) ,明摆着一个多项式分布您愣是去拿直线拟合也是不靠谱的,这就是为什么要把它们两者乘起来考虑。),原因之一就是低阶多项式更常见,先验概率( P(h) )较大(原因之二则隐藏在 P(D | h) 里面),这就是为什么我们要用样条来插值,而不是直接搞一个 N-1 阶多项式来通过任意 N 个点的原因。

以上分析当中隐含的哲学是,观测数据总是会有各种各样的误差,比如观测误差(比如你观测的时候一个 MM 经过你一不留神,手一抖就是一个误差出现了),所以如果过分去寻求能够完美解释观测数据的模型,就会落入所谓的数据过配(overfitting)的境地,一个过配的模型试图连误差(噪音)都去解释(而实际上噪音又是不需要解释的),显然就过犹不及了。所以 P(D | h) 大不代表你的 h (猜测)就是更好的 h。还要看 P(h) 是怎样的。所谓奥卡姆剃刀精神就是说:如果两个理论具有相似的解释力度,那么优先选择那个更简单的(往往也正是更平凡的,更少繁复的,更常见的)。

过分匹配的另一个原因在于当观测的结果并不是因为误差而显得“不精确”而是因为真实世界中对数据的结果产生贡献的因素太多太多,跟噪音不同,这些偏差是一些另外的因素集体贡献的结果,不是你的模型所能解释的——噪音那是不需要解释——一个现实的模型往往只提取出几个与结果相关度很高,很重要的因素(cause)。这个时候观察数据会倾向于围绕你的有限模型的预测结果呈正态分布,于是你实际观察到的结果就是这个正态分布的随机取样,这个取样很可能受到其余因素的影响偏离你的模型所预测的中心,这个时候便不能贪心不足地试图通过改变模型来“完美”匹配数据,因为那些使结果偏离你的预测的贡献因素不是你这个有限模型里面含有的因素所能概括的,硬要打肿脸充胖子只能导致不实际的模型,举个教科书例子:身高和体重的实际关系近似于一个二阶多项式的关系,但大家都知道并不是只有身高才会对体重产生影响,物理世界影响体重的因素太多太多了,有人身材高大却瘦得跟稻草,有人却是横长竖不长。但不可否认的是总体上来说,那些特殊情况越是特殊就越是稀少,呈围绕最普遍情况(胖瘦适中)的正态分布,这个分布就保证了我们的身高——体重相关模型能够在大多数情况下做出靠谱的预测。但是——刚才说了,特例是存在的,就算不是特例,人有胖瘦,密度也有大小,所以完美符合身高——体重的某个假想的二阶多项式关系的人是不存在的,我们又不是欧几里德几何世界当中的理想多面体,所以,当我们对人群随机抽取了 N 个样本(数据点)试图对这 N 个数据点拟合出一个多项式的话就得注意,它肯定得是二阶多项式,我们要做的只是去根据数据点计算出多项式各项的参数(一个典型的方法就是最小二乘);它肯定不是直线(我们又不是稻草),也不是三阶多项式四阶多项式.. 如果硬要完美拟合 N 个点,你可能会整出一个 N-1 阶多项式来——设想身高和体重的关系是 5 阶多项式看看?

3.2 模型比较理论(Model Comparasion)与贝叶斯奥卡姆剃刀(Bayesian Occam’s Razor)

实际上,模型比较就是去比较哪个模型(猜测)更可能隐藏在观察数据的背后。其基本思想前面已经用拼写纠正的例子来说明了。我们对用户实际想输入的单词的猜测就是模型,用户输错的单词就是观测数据。我们通过:

P(h | D) ∝ P(h) * P(D | h)

来比较哪个模型最为靠谱。前面提到,光靠 P(D | h) (即“似然”)是不够的,有时候还需要引入 P(h) 这个先验概率。奥卡姆剃刀就是说 P(h) 较大的模型有较大的优势,而最大似然则是说最符合观测数据的(即 P(D | h) 最大的)最有优势。整个模型比较就是这两方力量的拉锯。我们不妨再举一个简单的例子来说明这一精神:你随便找枚硬币,掷一下,观察一下结果。好,你观察到的结果要么是“正”,要么是“反”(不,不是少林足球那枚硬币:P ),不妨假设你观察到的是“正”。现在你要去根据这个观测数据推断这枚硬币掷出“正”的概率是多大。根据最大似然估计的精神,我们应该猜测这枚硬币掷出“正”的概率是 1 ,因为这个才是能最大化 P(D | h) 的那个猜测。然而每个人都会大摇其头——很显然,你随机摸出一枚硬币这枚硬币居然没有反面的概率是“不存在的”,我们对一枚随机硬币是否一枚有偏硬币,偏了多少,是有着一个先验的认识的,这个认识就是绝大多数硬币都是基本公平的,偏得越多的硬币越少见(可以用一个 beta 分布来表达这一先验概率)。将这个先验正态分布 p(θ) (其中 θ 表示硬币掷出正面的比例,小写的 p 代表这是概率密度函数)结合到我们的问题中,我们便不是去最大化 P(D | h) ,而是去最大化 P(D | θ) * p(θ) ,显然 θ = 1 是不行的,因为 P(θ=1) 为 0 ,导致整个乘积也为 0 。实际上,只要对这个式子求一个导数就可以得到最值点。

以上说的是当我们知道先验概率 P(h) 的时候,光用最大似然是不靠谱的,因为最大似然的猜测可能先验概率非常小。然而,有些时候,我们对于先验概率一无所知,只能假设每种猜测的先验概率是均等的,这个时候就只有用最大似然了。实际上,统计学家和贝叶斯学家有一个有趣的争论,统计学家说:我们让数据自己说话。言下之意就是要摒弃先验概率。而贝叶斯支持者则说:数据会有各种各样的偏差,而一个靠谱的先验概率则可以对这些随机噪音做到健壮。事实证明贝叶斯派胜利了,胜利的关键在于所谓先验概率其实也是经验统计的结果,譬如为什么我们会认为绝大多数硬币是基本公平的?为什么我们认为大多数人的肥胖适中?为什么我们认为肤色是种族相关的,而体重则与种族无关?先验概率里面的“先验”并不是指先于一切经验,而是仅指先于我们“当前”给出的观测数据而已,在硬币的例子中先验指的只是先于我们知道投掷的结果这个经验,而并非“先天”。

然而,话说回来,有时候我们必须得承认,就算是基于以往的经验,我们手头的“先验”概率还是均匀分布,这个时候就必须依赖用最大似然,我们用前面留下的一个自然语言二义性问题来说明这一点:

The girl saw the boy with a telescope.

到底是 The girl saw-with-a-telescope the boy 这一语法结构,还是 The girl saw the-boy-with-a-telescope 呢?两种语法结构的常见程度都差不多(你可能会觉得后一种语法结构的常见程度较低,这是事后偏见,你只需想想 The girl saw the boy with a book 就知道了。当然,实际上从大规模语料统计结果来看后一种语法结构的确稍稍不常见一丁点,但是绝对不足以解释我们对第一种结构的强烈倾向)。那么到底为什么呢?

我们不妨先来看看 MacKay 在书中举的一个漂亮的例子:

i1

图中有多少个箱子?特别地,那棵书后面是一个箱子?还是两个箱子?还是三个箱子?还是.. 你可能会觉得树后面肯定是一个箱子,但为什么不是两个呢?如下图:

i2

很简单,你会说:要是真的有两个箱子那才怪了,怎么就那么巧这两个箱子刚刚好颜色相同,高度相同呢?

用概率论的语言来说,你刚才的话就翻译为:猜测 h 不成立,因为 P(D | h) 太小(太巧合)了。我们的直觉是:巧合(小概率)事件不会发生。所以当一个猜测(假设)使得我们的观测结果成为小概率事件的时候,我们就说“才怪呢,哪能那么巧捏?!”

现在我们可以回到那个自然语言二义性的例子,并给出一个完美的解释了:如果语法结构是 The girl saw the-boy-with-a-telecope 的话,怎么那个男孩偏偏手里拿的就是望远镜——一个可以被用来 saw-with 的东东捏?这也忒小概率了吧。他咋就不会拿本书呢?拿什么都好。怎么偏偏就拿了望远镜?所以唯一的解释是,这个“巧合”背后肯定有它的必然性,这个必然性就是,如果我们将语法结构解释为 The girl saw-with-a-telescope the boy 的话,就跟数据完美吻合了——既然那个女孩是用某个东西去看这个男孩的,那么这个东西是一个望远镜就完全可以解释了(不再是小概率事件了)。

自然语言二义性很常见,譬如上文中的一句话:

参见《决策与判断》以及《Rationality for Mortals》第12章:小孩也可以解决贝叶斯问题

就有二义性:到底是参见这两本书的第 12 章,还是仅仅是第二本书的第 12 章呢?如果是这两本书的第 12 章那就是咄咄怪事了,怎么恰好两本书都有第 12 章,都是讲同一个问题,更诡异的是,标题还相同呢?

注意,以上做的是似然估计(即只看 P(D | h) 的大小),不含先验概率。通过这两个例子,尤其是那个树后面的箱子的例子我们可以看到,似然估计里面也蕴含着奥卡姆剃刀:树后面的箱子数目越多,这个模型就越复杂。单个箱子的模型是最简单的。似然估计选择了更简单的模型。

这个就是所谓的贝叶斯奥卡姆剃刀(Bayesian Occam’s Razor),因为这个剃刀工作在贝叶斯公式的似然(P(D | h) )上,而不是模型本身( P(h) )的先验概率上,后者是传统的奥卡姆剃刀。关于贝叶斯奥卡姆剃刀我们再来看一个前面说到的曲线拟合的例子:如果平面上有 N 个点,近似构成一条直线,但绝不精确地位于一条直线上。这时我们既可以用直线来拟合(模型1),也可以用二阶多项式(模型2)拟合,也可以用三阶多项式(模型3),.. ,特别地,用 N-1 阶多项式便能够保证肯定能完美通过 N 个数据点。那么,这些可能的模型之中到底哪个是最靠谱的呢?前面提到,一个衡量的依据是奥卡姆剃刀:越是高阶的多项式越是繁复和不常见。然而,我们其实并不需要依赖于这个先验的奥卡姆剃刀,因为有人可能会争辩说:你怎么就能说越高阶的多项式越不常见呢?我偏偏觉得所有阶多项式都是等可能的。好吧,既然如此那我们不妨就扔掉 P(h) 项,看看 P(D | h) 能告诉我们什么。我们注意到越是高阶的多项式,它的轨迹弯曲程度越是大,到了八九阶简直就是直上直下,于是我们不仅要问:一个比如说八阶多项式在平面上随机生成的一堆 N 个点偏偏恰好近似构成一条直线的概率(即 P(D | h) )有多大?太小太小了。反之,如果背后的模型是一条直线,那么根据该模型生成一堆近似构成直线的点的概率就大得多了。这就是贝叶斯奥卡姆剃刀。

这里只是提供一个关于贝叶斯奥卡姆剃刀的科普,强调直观解释,更多理论公式请参考 MacKay 的著作 《Information Theory : Inference and Learning Algorithms》第 28 章。

3.3 最小描述长度原则

贝叶斯模型比较理论与信息论有一个有趣的关联:

P(h | D) ∝ P(h) * P(D | h)

两边求对数,将右式的乘积变成相加:

ln P(h | D) ∝ ln P(h) + ln P(D | h)

显然,最大化 P(h | D) 也就是最大化 ln P(h | D)。而 ln P(h) + ln P(D | h) 则可以解释为模型(或者称“假设”、“猜测”)h 的编码长度加上在该模型下数据 D 的编码长度。使这个和最小的模型就是最佳模型。

而究竟如何定义一个模型的编码长度,以及数据在模型下的编码长度则是一个问题。更多可参考 Mitchell 的 《Machine Learning》的 6.6 节,或 Mackay 的 28.3 节)

3.4 最优贝叶斯推理

所谓的推理,分为两个过程,第一步是对观测数据建立一个模型。第二步则是使用这个模型来推测未知现象发生的概率。我们前面都是讲的对于观测数据给出最靠谱的那个模型。然而很多时候,虽然某个模型是所有模型里面最靠谱的,但是别的模型也并不是一点机会都没有。譬如第一个模型在观测数据下的概率是 0.5 。第二个模型是 0.4 ,第三个是 0.1 。如果我们只想知道对于观测数据哪个模型最可能,那么只要取第一个就行了,故事到此结束。然而很多时候我们建立模型是为了推测未知的事情的发生概率,这个时候,三个模型对未知的事情发生的概率都会有自己的预测,仅仅因为某一个模型概率稍大一点就只听他一个人的就太不民主了。所谓的最优贝叶斯推理就是将三个模型对于未知数据的预测结论加权平均起来(权值就是模型相应的概率)。显然,这个推理是理论上的制高点,无法再优了,因为它已经把所有可能性都考虑进去了。

只不过实际上我们是基本不会使用这个框架的,因为计算模型可能非常费时间,二来模型空间可能是连续的,即有无穷多个模型(这个时候需要计算模型的概率分布)。结果还是非常费时间。所以这个被看作是一个理论基准。

原文地址:https://www.cnblogs.com/feisky/p/1586303.html