LinkedList源码

1.介绍及注意事项

链表由Josh Bloch书写,属于Java集合框架中的一种,LinkedList实现的是双链表,实现了所有的链表操作,可能够实现所有元素(包括)的基本操作。

链表是非线程同步的,多线程情况下需要使用外部同步。

使用迭代器遍历此类时具有快速失败的特性(遍历过程中移除节点会报错)

/**
 * Doubly-linked list implementation of the {@code List} and {@code Deque}
 * interfaces.  Implements all optional list operations, and permits all
 * elements (including {@code null}).
 *
 * <p>All of the operations perform as could be expected for a doubly-linked
 * list.  Operations that index into the list will traverse the list from
 * the beginning or the end, whichever is closer to the specified index.
 *
 * <p><strong>Note that this implementation is not synchronized.</strong>
 * If multiple threads access a linked list concurrently, and at least
 * one of the threads modifies the list structurally, it <i>must</i> be
 * synchronized externally.  (A structural modification is any operation
 * that adds or deletes one or more elements; merely setting the value of
 * an element is not a structural modification.)  This is typically
 * accomplished by synchronizing on some object that naturally
 * encapsulates the list.
 *
 * If no such object exists, the list should be "wrapped" using the
 * {@link Collections#synchronizedList Collections.synchronizedList}
 * method.  This is best done at creation time, to prevent accidental
 * unsynchronized access to the list:<pre>
 *   List list = Collections.synchronizedList(new LinkedList(...));</pre>
 *
 * <p>The iterators returned by this class's {@code iterator} and
 * {@code listIterator} methods are <i>fail-fast</i>: if the list is
 * structurally modified at any time after the iterator is created, in
 * any way except through the Iterator's own {@code remove} or
 * {@code add} methods, the iterator will throw a {@link
 * ConcurrentModificationException}.  Thus, in the face of concurrent
 * modification, the iterator fails quickly and cleanly, rather than
 * risking arbitrary, non-deterministic behavior at an undetermined
 * time in the future.
 *
 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 * as it is, generally speaking, impossible to make any hard guarantees in the
 * presence of unsynchronized concurrent modification.  Fail-fast iterators
 * throw {@code ConcurrentModificationException} on a best-effort basis.
 * Therefore, it would be wrong to write a program that depended on this
 * exception for its correctness:   <i>the fail-fast behavior of iterators
 * should be used only to detect bugs.</i>
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @author  Josh Bloch
 * @see     List
 * @see     ArrayList
 * @since 1.2
 * @param <E> the type of elements held in this collection
 */

  

2.整体结构

LinkedList封装在Java.util包内,继承于AbstractSequentialList<E>抽象类(抽象类中定义了接口的基本方法,在子类中需要全部实现)

实现的接口有List<E>(List的基本方法), Deque<E>(队列的方法), Cloneable(用于对象的复制), java.io.Serializable(对象序列化,可用以对象的深复制)。

LinkedList继承结构如下:

java.lang.Object
    java.util.AbstractCollection<E>
        java.util.AbstractList<E>
            java.util.AbstractSequentialList<E>
                java.util.LinkedList<E>                        

LinkedList整体包含的整体功能如下:

 

linkedList维护的是双向链表,双向链表结构图如图所示

可以看出,源码内包含了三个成员变量,size,first,last和serialVersionUID,其中size用以维护链表大小,first和last用以维护链表的头尾节点,serialVersionUID是一个是根据类名、接口名、成员方法及属性等来生成一个64位的哈希字段,用来Java运行时判断类的一致性。

源码包含了三个类,Node类实现链表的节点,ListItr类实现了迭代器接口,在利用迭代器遍历链表的时候使用,DescendingIterator 是降序迭代器,能够返回一个逆序的迭代器列表。

Node类的源码如下:

 private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

  可以看出,双向链表的单个节点需要维护两个指针和一个存储的值,prev需要指向前一个变量,如果是首节点则为null,next需要指向后一个变量,如果是尾节点则为null。Node<E>使用了泛型,泛型是Java SE 1.5的新特性,泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数,能够在实现参数“”。

 ListItr实现的是ListIterator接口,ListIterator接口继承的是Iterator接口,能够实现向前或向后任意方向遍历的列表迭代器,在迭代过程中可以修改元素(不能够增加删除,增删会导致快速失败“fail-fast”),该接口相当于维护了一个游标,能够获取当前位置,或者指向前一个或者后一个,游标标示的是节点中间的位置(相当于链表的链),因此对于有n个元素的迭代器,游标位置可以有n+1个,下图表示了这种情况。

ListIterator接口的方法API如下所示:

void add(E e) //添加一个元素(可选操作)
boolean hasNext() //检查列表中是否还有下一个元素
boolean hasPrevoius() //检查列表中是否还有上一个元素
E next() //返回游标后的元素,并移动到下一个位置
int nextIndex() //返回游标后一个元素索引
E previous() //返回游标前的元素,并移动到前一个位置
int prevoiusIndex()//返回游标前一个元素索引
void remove() //移除被next()或previous()返回的元素(可选操作)
void set() //修改被next()或previous()返回的元素(可选操作)

ListItr类的源码注释如下:

 1 private class ListItr implements ListIterator<E> {
 2         private Node<E> lastReturned = null; //最后一个返回的节点
 3         private Node<E> next;//下一个节点
 4         private int nextIndex;//下一个指针
 5         private int expectedModCount = modCount;//用以判定迭代对象是否被修改
 6 
 7         ListItr(int index) {
 8             // assert isPositionIndex(index);
 9             next = (index == size) ? null : node(index);//判断是否是末尾的位置
10             nextIndex = index;
11         }
12 
13         public boolean hasNext() {
14             return nextIndex < size;
15         }
16 
17         public E next() {
18             checkForComodification();//首先检查迭代对象是否被修改
19             if (!hasNext())//检查是否存在下一个节点
20                 throw new NoSuchElementException();
21             //下面代码表示返回游标后的对象,并将游标后移一位
22             lastReturned = next;
23             next = next.next;
24             nextIndex++;
25             return lastReturned.item;
26         }
27 
28         public boolean hasPrevious() {
29             return nextIndex > 0;
30         }
31 
32         public E previous() {
33             checkForComodification();//检查对象是否被修改
34             if (!hasPrevious())//检测对象是否存在
35                 throw new NoSuchElementException();
36             //返回游标前一个节点,并将游标前移一位
37             lastReturned = next = (next == null) ? last : next.prev;
38             nextIndex--;
39             return lastReturned.item;
40         }
41 
42         public int nextIndex() {
43             return nextIndex;
44         }
45 
46         public int previousIndex() {
47             return nextIndex - 1;
48         }
49 
50         public void remove() {
51             checkForComodification();//检测对象是否修改
52             if (lastReturned == null)//检测对象是否存在
53                 throw new IllegalStateException();
54             
55             Node<E> lastNext = lastReturned.next;//先将移除的代码后的节点信息保留下来
56             unlink(lastReturned);//移除该节点
57             if (next == lastReturned)//如果next指向的节点被删除了,需要指向下一个节点
58                 next = lastNext;
59             else
60                 nextIndex--;
61             lastReturned = null;//返回节点为空
62             expectedModCount++;
63         }
64 
65         public void set(E e) {
66             if (lastReturned == null)
67                 throw new IllegalStateException();
68             checkForComodification();////检查是否被修改
69             lastReturned.item = e;
70         }
71 
72         public void add(E e) {
73             checkForComodification();
74             lastReturned = null;
75             //在当前位置添加节点,并将指针后移
76             if (next == null)
77                 linkLast(e);
78             else
79                 linkBefore(e, next);
80             nextIndex++;
81             expectedModCount++;
82         }
83 
84         final void checkForComodification() {
85             if (modCount != expectedModCount)//检查修改的次数是否一致
86                 throw new ConcurrentModificationException();
87         }
88     }

在ListItr中,重要的的功能有从index开始遍历ListItr(index),移动到下一个元素next(),移动到前一个元素previous(),移除对象remove(),设置set(E e),添加对象add(E e),检查是否改动checkForComodification()等。

对于迭代器,首先需要维护的变量如下

源码如下:

1 private Node<E> lastReturned = null; //最后一个返回的节点
2         private Node<E> next;//下一个节点
3         private int nextIndex;//下一个指针

构造函数ListItr(int index)过程:

 可以看出构造函数分为从中间开始和从末尾开始,如果从末尾开始,next要指向null,源码如下:

1 ListItr(int index) {
2             // assert isPositionIndex(index);
3             next = (index == size) ? null : node(index);//判断是否是末尾的位置
4             nextIndex = index;
5         }

向后遍历next()函数,其过程如下:

源码如下:

public E next() {
            checkForComodification();//首先检查迭代对象是否被修改
            if (!hasNext())//检查是否存在下一个节点
                throw new NoSuchElementException();
			//下面代码表示返回游标后的对象,并将游标后移一位
            lastReturned = next;
            next = next.next;
            nextIndex++;
            return lastReturned.item;
        }

向前移动previous()过程如下:

源码如下:

public E previous() {
            checkForComodification();//检查对象是否被修改
            if (!hasPrevious())//检测对象是否存在
                throw new NoSuchElementException();
			//返回游标前一个节点,并将游标前移一位
            lastReturned = next = (next == null) ? last : next.prev;
            nextIndex--;
            return lastReturned.item;
        }

  移除对象过程remove()过程如下:

  

源码如下:

 1 public void remove() {
 2             checkForComodification();//检测对象是否修改
 3             if (lastReturned == null)//检测对象是否存在
 4                 throw new IllegalStateException();
 5             
 6             Node<E> lastNext = lastReturned.next;//先将移除的代码后的节点信息保留下来
 7             unlink(lastReturned);//移除该节点
 8             if (next == lastReturned)//如果next指向的节点被删除了,需要指向下一个节点
 9                 next = lastNext;
10             else
11                 nextIndex--;
12             lastReturned = null;//返回节点为空
13             expectedModCount++;
14         }

检查对吗通过设置修改变量,如在迭代器中修改会同时改变modCount和expectedModCount,源码如下:

public void remove() {
            //省略
            unlink(lastReturned);//此处包含modCount++
            //省略
            expectedModCount++;
        }
public void add(E e) {
           //省略
            if (next == null)
                linkLast(e);//此处包含modCount++
            else
                linkBefore(e, next);//此处包含modCount++
            //省略
            expectedModCount++;
        }

  而在LinkedList中的修改只改动了modeCount++,如

/**
     * Unlinks non-null last node l.
     */
    private E unlinkLast(Node<E> l) {
        //省略
        modCount++;
        return element;
    }

  而且,在迭代器源码操作函数中都有改动检测代码,判断两个计数变量是否相同

checkForComodification();//检测对象是否修改
            if (lastReturned == null)//检测对象是否存在
                throw new IllegalStateException();

  也就是说,在迭代器操作过程中,如果使用迭代器提供的remove和add方法,可以顺利通过,如果使用LinkedList提供的修改方法,会导致异常的产生,此举是为了保证在多线程环境中对象保持一致性。

第三个类是DescendingIterator implements Iterator<E>,实现逆序的迭代器,因此将next和previos功能反向即可,源码如下:

/**
     * Adapter to provide descending iterators via ListItr.previous
     */
    private class DescendingIterator implements Iterator<E> {
        private final ListItr itr = new ListItr(size());
        public boolean hasNext() {
            return itr.hasPrevious();
        }
        public E next() {
            return itr.previous();
        }
        public void remove() {
            itr.remove();
        }
    }

  由于在LinedList源码中是由其中主要几个函数实现的,主要的实现结构如下所示,粉色表示构造函数,黄色表示比较简单的函数

首先构造函数,可以看出,构造函数直接将所有节点添加进链表

    public LinkedList() {
    }
    public LinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
    }

  针对较复杂的函数,可以看出,很多函数是分别有几个基本的函数实现的。

unlinkLast函数源码如下:

    private E unlinkLast(Node<E> l) {
        // assert l == last && l != null;
        final E element = l.item;
        final Node<E> prev = l.prev;
        l.item = null;
        l.prev = null; // help GC
        last = prev;
        if (prev == null)
            first = null;
        else
            prev.next = null;
        size--;
        modCount++;
        return element;
    }

  linkBefore函数实现在链表第一个添加元素,源码如下:

    void linkBefore(E e, Node<E> succ) {
        // assert succ != null;
        final Node<E> pred = succ.prev;
        final Node<E> newNode = new Node<>(pred, e, succ);
        succ.prev = newNode;
        if (pred == null)
            first = newNode;
        else
            pred.next = newNode;
        size++;
        modCount++;
    }

  同理,linkLast源码如下:

 1 void linkLast(E e) {
 2         final Node<E> l = last;
 3         final Node<E> newNode = new Node<>(l, e, null);
 4         last = newNode;
 5         if (l == null)
 6             first = newNode;
 7         else
 8             l.next = newNode;
 9         size++;
10         modCount++;
11     }

indexOf实现返回某个元素的所在位置,此函数直接从链表头部开始搜索开始就行:

 1 public int indexOf(Object o) {
 2         int index = 0;
 3         if (o == null) {
 4             for (Node<E> x = first; x != null; x = x.next) {
 5                 if (x.item == null)
 6                     return index;
 7                 index++;
 8             }
 9         } else {
10             for (Node<E> x = first; x != null; x = x.next) {
11                 if (o.equals(x.item))
12                     return index;
13                 index++;
14             }
15         }
16         return -1;
17     }

addAll函数实现添加所有的节点

 1 public boolean addAll(int index, Collection<? extends E> c) {
 2         checkPositionIndex(index);
 3 
 4         Object[] a = c.toArray();
 5         int numNew = a.length;
 6         if (numNew == 0)//判定要添加的节点长度
 7             return false;
 8 
 9         Node<E> pred, succ;
10         //判断插入位置是否是最后
11         if (index == size) {//在链表的最后连接
12             succ = null;
13             pred = last;
14         } else {//从中间插入
15             succ = node(index);
16             pred = succ.prev;
17         }
18 
19         for (Object o : a) {//依次添加链接节点
20             @SuppressWarnings("unchecked") E e = (E) o;
21             Node<E> newNode = new Node<>(pred, e, null);
22             if (pred == null)
23                 first = newNode;
24             else
25                 pred.next = newNode;
26             pred = newNode;
27         }
28 
29         if (succ == null) {
30             last = pred;//从最后位置加入,更新last指针
31         } else {
32             pred.next = succ;//将插入后的链表连接起来
33             succ.prev = pred;
34         }
35 
36         size += numNew;
37         modCount++;
38         return true;
39     }

node函数实现返回特定位置的节点

 1 Node<E> node(int index) {
 2         // assert isElementIndex(index);
 3 
 4         if (index < (size >> 1)) {//size>>1相当于/2,判断从链表的前方添加近还是后方添加近
 5             Node<E> x = first;
 6             for (int i = 0; i < index; i++)
 7                 x = x.next;
 8             return x;
 9         } else {
10             Node<E> x = last;
11             for (int i = size - 1; i > index; i--)
12                 x = x.prev;
13             return x;
14         }
15     }

indexOf和lasIndexOf函数返回从前或从后的位置数目,源码如下:

 1 public int indexOf(Object o) {
 2         int index = 0;
 3         if (o == null) {
 4             for (Node<E> x = first; x != null; x = x.next) {
 5                 if (x.item == null)
 6                     return index;
 7                 index++;
 8             }
 9         } else {
10             for (Node<E> x = first; x != null; x = x.next) {
11                 if (o.equals(x.item))
12                     return index;
13                 index++;
14             }
15         }
16         return -1;
17     }
18 public int lastIndexOf(Object o) {
19         int index = size;
20         if (o == null) {
21             for (Node<E> x = last; x != null; x = x.prev) {
22                 index--;
23                 if (x.item == null)
24                     return index;
25             }
26         } else {
27             for (Node<E> x = last; x != null; x = x.prev) {
28                 index--;
29                 if (o.equals(x.item))
30                     return index;
31             }
32         }
33         return -1;
34     }

unlinkFirst实现断开第一个节点的功能:

 1 private E unlinkFirst(Node<E> f) {
 2         // assert f == first && f != null;
 3         final E element = f.item;
 4         final Node<E> next = f.next;
 5         f.item = null;
 6         f.next = null; // help GC
 7         first = next;
 8         if (next == null)
 9             last = null;
10         else
11             next.prev = null;
12         size--;
13         modCount++;
14         return element;
15     }

linkFitst添加头节点,处理好fitst指针即可:

 1 private void linkFirst(E e) {
 2         final Node<E> f = first;
 3         final Node<E> newNode = new Node<>(null, e, f);
 4         first = newNode;
 5         if (f == null)
 6             last = newNode;
 7         else
 8             f.prev = newNode;
 9         size++;
10         modCount++;
11     }

其他的函数较为简单,不做分析

原文地址:https://www.cnblogs.com/feichangnice/p/7674668.html