【读书笔记】IL Getting Started

Abstract:

   IL directives:

   ld<xxx>: load xxx onto stack

   st<xxx>: pop off stack into xxx

(1)

ldarg.<length> - load argument onto the stack

Format

Assembly Format

Description

FE 09 <unsigned int16>

ldarg num

Load argument numbered num onto stack.

0E <unsigned int8>

ldarg.s num

Load argument numbered num onto stack, short form.

02

ldarg.0

Load argument 0 onto stack

03

ldarg.1

Load argument 1 onto stack

04

ldarg.2

Load argument 2 onto stack

05

ldarg.3

Load argument 3 onto stack

Description:

The ldarg num instruction pushes the num’th incoming argument, where arguments are numbered 0 onwards (see Partition I_alink_partitionI) onto the evaluation stack. The ldarg instruction can be used to load a value type or a built-in value onto the stack by copying it from an incoming argument. The type of the value is the same as the type of the argument, as specified by the current method’s signature.

The ldarg.0, ldarg.1, ldarg.2, and ldarg.3 instructions are efficient encodings for loading any of the first 4 arguments. The ldarg.s instruction is an efficient encoding for loading argument numbers 4 through 255.

For procedures that take a variable-length argument list, the ldarg instructions can be used only for the initial fixed arguments, not those in the variable part of the signature. (See the arglist instruction)

Arguments that hold an integer value smaller than 4 bytes long are expanded to type int32 when they are loaded onto the stack. Floating-point values are expanded to their native size (type F).

(2)

starg.<length> - store a value in an argument slot

Format

Assembly Format

Description

FE 0B <unsigned int16>

starg num

Store a value to the argument numbered num

10 <unsigned int8>

starg.s num

Store a value to the argument numbered num, short form

Description:

The starg num instruction pops a value from the stack and places it in argument slot num (see Partition I_alink_partitionI). The type of the value must match the type of the argument, as specified in the current method’s signature. The starg.s instruction provides an efficient encoding for use with the first 256 arguments.

For procedures that take a variable argument list, the starg instructions can be used only for the initial fixed arguments, not those in the variable part of the signature.

Storing into arguments that hold an integer value smaller than 4 bytes long truncates the value as it moves from the stack to the argument. Floating-point values are rounded from their native size (typeF) to the size associated with the argument.

 

(3)

ldloc - load local variable onto the stack

Format

Assembly Format

Description

FE 0C<unsigned int16>

ldloc indx

Load local variable of index indx onto stack.

11 <unsigned int8>

ldloc.s indx

Load local variable of index indx onto stack, short form.

06

ldloc.0

Load local variable 0 onto stack.

07

ldloc.1

Load local variable 1 onto stack.

08

ldloc.2

Load local variable 2 onto stack.

09

ldloc.3

Load local variable 3 onto stack.

Description:

The ldloc indx instruction pushes the contents of the local variable number indx onto the evaluation stack, where local variables are numbered 0 onwards. Local variables are initialized to 0 before entering the method only if the initialize flag on the method is true (see Partition I_alink_partitionI). The ldloc.0, ldloc.1, ldloc.2, and ldloc.3 instructions provide an efficient encoding for accessing the first four local variables. The ldloc.s instruction provides an efficient encoding for accessing local variables 4 through 255.

The type of the value is the same as the type of the local variable, which is specified in the method header. See Partition I_alink_partitionI.

Local variables that are smaller than 4 bytes long are expanded to type int32 when they are loaded onto the stack. Floating-point values are expanded to their native size (type F).

(4)

stloc - pop value from stack to local variable

Format

Assembly Format

Description

FE 0E <unsigned int16>

stloc indx

Pop value from stack into local variable indx.

13 <unsigned int8>

stloc.s indx

Pop value from stack into local variable indx, short form.

0A

stloc.0

Pop value from stack into local variable 0.

0B

stloc.1

Pop value from stack into local variable 1.

0C

stloc.2

Pop value from stack into local variable 2.

0D

stloc.3

Pop value from stack into local variable 3.

Description:

The stloc indx instruction pops the top value off the evalution stack and moves it into local variable number indx (see Partition I_alink_partitionI), where local variables are numbered 0 onwards. The type of value must match the type of the local variable as specified in the current method’s locals signature. The stloc.0, stloc.1, stloc.2, and stloc.3 instructions provide an efficient encoding for the first four local variables; the stloc.s instruction provides an efficient encoding for local variables 4 through 255.

Storing into locals that hold an integer value smaller than 4 bytes long truncates the value as it moves from the stack to the local variable. Floating-point values are rounded from their native size (type F) to the size associated with the argument.

Example:

   1: private static void Main(string[] args)
   2: {
   3:     string strA = "abcdef";
   4:     string strB = "abcdef";
   5:     Console.WriteLine(object.ReferenceEquals(strA, strB));
   6:     string strC = "abcdef";
   7:     Console.WriteLine(object.ReferenceEquals(strA, strC));
   8:     string strD = "abc";
   9:     string strE = strD + "def";
  10:     Console.WriteLine(object.ReferenceEquals(strA, strE));
  11:     strE = string.Intern(strE);
  12:     Console.WriteLine(object.ReferenceEquals(strA, strE));
  13: }

 

The corresponding IL instructions are as below,

   1: .method private hidebysig static void Main(string[] args) cil managed
   2: {
   3:     .entrypoint
   4:     .maxstack 2
   5:     .locals init (
   6:         [0] string strA,
   7:         [1] string strB,
   8:         [2] string strC,
   9:         [3] string strD,
  10:         [4] string strE)
  11:     L_0000: nop 
  12:     L_0001: ldstr "abcdef"
  13:     L_0006: stloc.0 
  14:     L_0007: ldstr "abcdef"
  15:     L_000c: stloc.1 
  16:     L_000d: ldloc.0 
  17:     L_000e: ldloc.1 
  18:     L_000f: call bool [mscorlib]System.Object::ReferenceEquals(object, object)
  19:     L_0014: call void [mscorlib]System.Console::WriteLine(bool)
  20:     L_0019: nop 
  21:     L_001a: ldstr "abcdef"
  22:     L_001f: stloc.2 
  23:     L_0020: ldloc.0 
  24:     L_0021: ldloc.2 
  25:     L_0022: call bool [mscorlib]System.Object::ReferenceEquals(object, object)
  26:     L_0027: call void [mscorlib]System.Console::WriteLine(bool)
  27:     L_002c: nop 
  28:     L_002d: ldstr "abc"
  29:     L_0032: stloc.3 
  30:     L_0033: ldloc.3 
  31:     L_0034: ldstr "def"
  32:     L_0039: call string [mscorlib]System.String::Concat(string, string)
  33:     L_003e: stloc.s strE
  34:     L_0040: ldloc.0 
  35:     L_0041: ldloc.s strE
  36:     L_0043: call bool [mscorlib]System.Object::ReferenceEquals(object, object)
  37:     L_0048: call void [mscorlib]System.Console::WriteLine(bool)
  38:     L_004d: nop 
  39:     L_004e: ldloc.s strE
  40:     L_0050: call string [mscorlib]System.String::Intern(string)
  41:     L_0055: stloc.s strE
  42:     L_0057: ldloc.0 
  43:     L_0058: ldloc.s strE
  44:     L_005a: call bool [mscorlib]System.Object::ReferenceEquals(object, object)
  45:     L_005f: call void [mscorlib]System.Console::WriteLine(bool)
  46:     L_0064: nop 
  47:     L_0065: ret 
  48: }

Conclusion: It’s a must to understand IL to better understand .NET.

--End--

原文地址:https://www.cnblogs.com/fangwenyu/p/1589037.html