13-垃圾邮件分类2

1.读取

 1 def read_dataset():
 2     file_path = r'SHSSpamCollection'
 3     sms = open(file_path,encoding='utf-8')
 4     sms_data = []
 5     sms_label = []
 6     csv_reader = csv.reader(sms,delimiter='	')
 7     for line in csv_reader:
 8         sms_label.append(line[0])
 9         sms_data.append(preprocessing(line[1]))
10         sms.close()
11     return sms_data,sms_label

2.数据预处理

 1 def preprocess(text):
 2     tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]  # 分词
 3     stops = stopwords.words('english')  # 使用英文的停用词表
 4     tokens = [token for token in tokens if token not in stops]  # 去除停用词
 5     tokens = [token.lower() for token in tokens if len(token) >= 3]  # 大小写,短词
 6     wnl = WordNetLemmatizer()
 7     tag = nltk.pos_tag(tokens)  # 词性
 8     tokens = [wnl.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)]  # 词性还原
 9     preprocessed_text = ' '.join(tokens)
10     return preprocessed_text

3.数据划分—训练集和测试集数据划分

from sklearn.model_selection import train_test_split

x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)

1 def split_dataset(data, label):
2     x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.2, random_state=0, stratify=label)
3     return x_train, x_test, y_train, y_tes

4.文本特征提取

sklearn.feature_extraction.text.CountVectorizer

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer

sklearn.feature_extraction.text.TfidfVectorizer

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer#sklearn.feature_extraction.text.TfidfVectorizer

from sklearn.feature_extraction.text import TfidfVectorizer

tfidf2 = TfidfVectorizer()

观察邮件与向量的关系

向量还原为邮件

 1 # 文本转化为tf-idf的特征矩阵
 2 def tfidf_dataset(x_train, x_test):
 3     tfidf = TfidfVectorizer()
 4     X_train = tfidf.fit_transform(x_train)
 5     X_test = tfidf.transform(x_test)
 6     return X_train, X_test, tfidf
 7 
 8 # 向量还原成邮件
 9 def revert_mail(x_train, X_train, model):
10     s = X_train.toarray()[0]
11     print("第一封邮件向量表示为:", s)
12     a = np.flatnonzero(X_train.toarray()[0])  # 非零元素的位置(index)
13     print("非零元素的位置:", a)
14     print("向量的非零元素的值:", s[a])
15     b = model.vocabulary_  # 词汇表
16     key_list = []
17     for key, value in b.items():
18         if value in a:
19             key_list.append(key)  # key非0元素对应的单词
20     print("向量非零元素对应单词:", key_list)
21     print("向量化之前的邮件:", x_train[0])

4.模型选择

from sklearn.naive_bayes import GaussianNB

from sklearn.naive_bayes import MultinomialNB

说明为什么选择这个模型?

源码如下:

1 def mnb_model(x_train, x_test, y_train, y_test):
2     mnb = MultinomialNB()
3     mnb.fit(x_train, y_train)
4     predict = mnb.predict(x_test)
5     print("总数:", len(y_test))
6     print("预测正确数:", (predict == y_test).sum())
7     print("预测准确率:",sum(predict == y_test) / len(y_test))
8     return predict

  因为它并不符合正态分布的特征,因此要选择多项式分布类型。

5.模型评价:混淆矩阵,分类报告

from sklearn.metrics import confusion_matrix

confusion_matrix = confusion_matrix(y_test, y_predict)

说明混淆矩阵的含义

from sklearn.metrics import classification_report

说明准确率、精确率、召回率、F值分别代表的意义 

1 def class_report(ypre_mnb, y_test):
2     conf_matrix = confusion_matrix(y_test, ypre_mnb)
3     print("=======================================")
4     print("混淆矩阵:
", conf_matrix)
5     c = classification_report(y_test, ypre_mnb)
6     print("=======================================")
7     print("分类报告:
", c)
8     print("模型准确率:", (conf_matrix[0][0] + conf_matrix[1][1]) / np.sum(conf_matrix))

混淆矩阵 confusion-matrix:

 TP(True Positive:真实为0,预测为0

 TN(True Negative:真实为1,预测为1

 FP(False Positive:真实为1,预测为0 

 FN(False Negative):真实为0,预测为1  

分类确率所有样本中被预测正确的样本的比率。

精确率在被所有预测为正的样本中实际为正样本的概率。

召回率 指在实际为正的样本中被预测为正样本的概率。

F1值:准确率和召回率的加权调和平均。

6.比较与总结

如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?

答:CountVectorizer只考虑每种词汇在该训练文本中出现的频率,而TfidfVectorizer除了考量某一词汇在当前训练文本中出现的频率之外,同时关注包含这个词汇的其它训练文本数目的倒数。相比之下,训练文本的数量越多,TfidfVectorizer这种特征量化方式就更有优势

原文地址:https://www.cnblogs.com/dyun3/p/12976319.html