u-boot的nand驱动写过程分析

从命令说起,在u-boot输入下列命令:

nand write 40008000 0 20000
命令的意思是将内存0x40008000开始的部分写入nand,从nand地址0开始写,写入长度是0x200000

回车之后,代码如何运行呢?命令的输入,执行之前都已经分析过了,初始化过程也分析了

请参阅:

http://blog.csdn.net/andy_wsj/article/details/9335755

http://blog.csdn.net/andy_wsj/article/details/9339247

http://blog.csdn.net/andy_wsj/article/details/8614905


执行这条命令,将调用u-boot-sunxi-sunxicommoncmd_nand.c内的函数do_nand。

int do_nand(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])


nand write 40008000 0 20000在参数argv中,而且
argv[0] = "nand"
argv[1] = "write"
argv[2] = "40008000"
argv[3] = "0"
argv[4] = "20000"
argc = 5 参数的个数


分析一下do_nand函数的片段,篇幅关系,只保留写操作部分:
nt do_nand(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
{
int i, ret = 0;
ulong addr;
loff_t off, size;
char *cmd, *s;
nand_info_t *nand;
#ifdef CONFIG_SYS_NAND_QUIET
int quiet = CONFIG_SYS_NAND_QUIET;
#else
int quiet = 0;
#endif
const char *quiet_str = getenv("quiet");
int dev = nand_curr_device;                 //当前NAND芯片,如果板上有多个芯片,则不能直接赋值,大部分板子都是一个NAND
int repeat = flag & CMD_FLAG_REPEAT;


/* at least two arguments please */
if (argc < 2)
goto usage;


if (quiet_str)
quiet = simple_strtoul(quiet_str, NULL, 0) != 0;


cmd = argv[1];   //cmd就指向命令“write”,


   ........判断是什么命令,多余判断删除了..............


/* The following commands operate on the current device, unless
* overridden by a partition specifier.  Note that if somehow the
* current device is invalid, it will have to be changed to a valid
* one before these commands can run, even if a partition specifier
* for another device is to be used.
*/
if (dev < 0 || dev >= CONFIG_SYS_MAX_NAND_DEVICE ||  //判断芯片是否存在或是否定义
   !nand_info[dev].name) {
puts(" no devices available ");
return 1;
}
nand = &nand_info[dev];   //获取定义的nand芯片信息
  
  ................
  
if (strncmp(cmd, "read", 4) == 0 || strncmp(cmd, "write", 5) == 0) {  //nand读写操作
size_t rwsize;
ulong pagecount = 1;
int read;
int raw;


if (argc < 4)  
goto usage;


addr = (ulong)simple_strtoul(argv[2], NULL, 16);  //将argv[2] = "40008000"转换成16进制,0x40008000


read = strncmp(cmd, "read", 4) == 0; /* 1 = read, 0 = write */  //判断读写操作类型
printf(" NAND %s: ", read ? "read" : "write");


nand = &nand_info[dev];


s = strchr(cmd, '.');   //看看是否带有扩展命令,如write.raw, write.jffs2等等,输入是“write”,结果s = NULL;


if (s && !strcmp(s, ".raw")) {
      ......省略.....
      
} else {  //执行这里,计算地址偏移量,长度
if (arg_off_size(argc - 3, argv + 3, &dev, 
&off, &size) != 0)
return 1;


rwsize = size;
}


if (!s || !strcmp(s, ".jffs2") ||      //实际执行这里
   !strcmp(s, ".e") || !strcmp(s, ".i")) {
if (read)
ret = nand_read_skip_bad(nand, off, &rwsize,
(u_char *)addr);
else
ret = nand_write_skip_bad(nand, off, &rwsize,   //执行函数nand_write_skip_bad
 (u_char *)addr, 0);


} else if (......省略.....) {
......省略.....
......省略.....
} else {
printf("Unknown nand command suffix '%s'. ", s);
return 1;
}


printf(" %zu bytes %s: %s ", rwsize,
      read ? "read" : "written", ret ? "ERROR" : "OK");


return ret == 0 ? 0 : 1;
}


..........

return 0;
}
来看看函数nand_write_skip_bad,在文件u-boot-sunxi-sunxidriversmtd and and_util.c内:
经过do_nand处理,可知参数就是输入命令的内容:
offset   为  0
*length  为 0x200000
buffer   指向0x40008000


int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
u_char *buffer, int flags)
{
int rval = 0, blocksize;
size_t left_to_write = *length;
u_char *p_buffer = buffer;
int need_skip;


#ifdef CONFIG_CMD_NAND_YAFFS
if (flags & WITH_YAFFS_OOB) {
if (flags & ~WITH_YAFFS_OOB)
return -EINVAL;


int pages;
pages = nand->erasesize / nand->writesize;
blocksize = (pages * nand->oobsize) + nand->erasesize;
if (*length % (nand->writesize + nand->oobsize)) {
printf ("Attempt to write incomplete page"
" in yaffs mode ");
return -EINVAL;
}
} else
#endif
{
blocksize = nand->erasesize;  //执行这里,nand的刷新都是以块为单位的,所以blocksize就是刷新的长度,对于cubieboard上的nand芯片,是1M+80K
}


/*
* nand_write() handles unaligned, partial page writes.
*
* We allow length to be unaligned, for convenience in
* using the $filesize variable.
*
* However, starting at an unaligned offset makes the
* semantics of bad block skipping ambiguous (really,
* you should only start a block skipping access at a
* partition boundary).  So don't try to handle that.
*/
if ((offset & (nand->writesize - 1)) != 0) {    //输入的偏移量要以块长度对齐
printf ("Attempt to write non page aligned data ");
*length = 0;
return -EINVAL;
}


need_skip = check_skip_len(nand, offset, *length);  //判断是否需要越过坏块,这里需要坏块读取操作,nand驱动的一个功能
if (need_skip < 0) {
printf ("Attempt to write outside the flash area ");
*length = 0;
return -EINVAL;
}


if (!need_skip && !(flags & WITH_DROP_FFS)) {        //不需要,即写的部分没有坏块
rval = nand_write (nand, offset, length, buffer);  //直接写
if (rval == 0)
return 0;


*length = 0;
printf ("NAND write to offset %llx failed %d ",
offset, rval);
return rval;
}


while (left_to_write > 0) {  // 剩下要写的字节数,开始就是命令输入的0x200000
size_t block_offset = offset & (nand->erasesize - 1);
size_t write_size, truncated_write_size;


WATCHDOG_RESET ();


if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) { //从开始的位置往后找坏块,直到找到一个可写的为止
printf ("Skip bad block 0x%08llx ",
offset & ~(nand->erasesize - 1));
offset += nand->erasesize - block_offset;
continue;
}


if (left_to_write < (blocksize - block_offset))  //找到可写的块,判断写入的数据是不是小于一块,对于cubieboard,是1M
write_size = left_to_write;                    //由于输入的是0x200000即2M,因此需要写两次
else
write_size = blocksize - block_offset;


#ifdef CONFIG_CMD_NAND_YAFFS
.......
#endif
{
truncated_write_size = write_size;
#ifdef CONFIG_CMD_NAND_TRIMFFS
 .......
#endif


rval = nand_write(nand, offset, &truncated_write_size,  //调用nand_write,写入数据
p_buffer);
offset += write_size;         //偏移量往后移动
p_buffer += write_size;       //数据指针往后移动
}


if (rval != 0) {
printf ("NAND write to offset %llx failed %d ",
offset, rval);
*length -= left_to_write;
return rval;
}


left_to_write -= write_size;   //剩下的字节数,循环写的条件
}


return 0;
}


无论如何写,有没有坏块,最后都使用函数nand_write,接下来再看看这个函数
在文件在文件u-boot-sunxi-sunxidriversmtd and and_base.c内:
这个函数就是写的准备,这已经执行到驱动代码的逻辑层了


static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
 size_t *retlen, const uint8_t *buf)
{
struct nand_chip *chip = mtd->priv;
int ret;


/* Do not allow writes past end of device */ 不能超过最大长度
if ((to + len) > mtd->size)
return -EINVAL;
if (!len)
return 0;


nand_get_device(chip, mtd, FL_WRITING);  //获取设备,就是获取需要写的那个nand芯片的数据


chip->ops.len = len;                     //写入的长度,按输入命令,第一次时这个就是一个块的长度
chip->ops.datbuf = (uint8_t *)buf;       //数据所在的位置,第一次就是输入的内存地址0x40008000处
chip->ops.oobbuf = NULL;


ret = nand_do_write_ops(mtd, to, &chip->ops);   //执行写操作


*retlen = chip->ops.retlen;


nand_release_device(mtd);


return ret;
}
再看看nand_do_write_ops函数,就在这个文件nand_base.c内,nand_write函数的上面:
到了这里,其实已经接近硬件操作了,如果要写一个nand驱动,实现写操作,
看看这个函数,就是知道需要实现的几个操作了。下面对几个关键的地方进行标记,说明写驱动需要实现的功能
static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
    struct mtd_oob_ops *ops)
{
int chipnr, realpage, page, blockmask, column;
struct nand_chip *chip = mtd->priv;
uint32_t writelen = ops->len;


uint32_t oobwritelen = ops->ooblen;
uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
mtd->oobavail : mtd->oobsize;


uint8_t *oob = ops->oobbuf;
uint8_t *buf = ops->datbuf;
int ret, subpage;


ops->retlen = 0;
if (!writelen)
return 0;


column = to & (mtd->writesize - 1);
subpage = column || (writelen & (mtd->writesize - 1));


if (subpage && oob)
return -EINVAL;


chipnr = (int)(to >> chip->chip_shift);
chip->select_chip(mtd, chipnr);          //芯片片选,由于各种CPU的片选方式或寄存器不同,或者板子电路不同,所以用户必须自己实现这个函数


/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
printk (KERN_NOTICE "nand_do_write_ops: Device is write protected ");
return -EIO;
}


realpage = (int)(to >> chip->page_shift);
page = realpage & chip->pagemask;
blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;


/* Invalidate the page cache, when we write to the cached page */
if (to <= (chip->pagebuf << chip->page_shift) &&
   (chip->pagebuf << chip->page_shift) < (to + ops->len))
chip->pagebuf = -1;


/* If we're not given explicit OOB data, let it be 0xFF */
if (likely(!oob))
memset(chip->oob_poi, 0xff, mtd->oobsize);


/* Don't allow multipage oob writes with offset */
if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
return -EINVAL;


while (1) {    输入的长度是块,只能一页一页的写,所以要循环写
WATCHDOG_RESET();


int bytes = mtd->writesize;
int cached = writelen > bytes && page != blockmask;
uint8_t *wbuf = buf;


/* Partial page write ? */
if (unlikely(column || writelen < (mtd->writesize - 1))) {
cached = 0;
bytes = min_t(int, bytes - column, (int) writelen);
chip->pagebuf = -1;
memset(chip->buffers->databuf, 0xff, mtd->writesize);
memcpy(&chip->buffers->databuf[column], buf, bytes);
wbuf = chip->buffers->databuf;
}


if (unlikely(oob)) {
size_t len = min(oobwritelen, oobmaxlen);
oob = nand_fill_oob(chip, oob, len, ops);
oobwritelen -= len;
}


ret = chip->write_page(mtd, chip, wbuf, page, cached,  //写一页,这个函数有通用的实现,若不适合自己的芯片,则需要自己实现页写功能
      (ops->mode == MTD_OOB_RAW));
if (ret)
break;


writelen -= bytes;
if (!writelen)
break;


column = 0;
buf += bytes;
realpage++;


page = realpage & chip->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
chip->select_chip(mtd, -1);
chip->select_chip(mtd, chipnr);
}
}


ops->retlen = ops->len - writelen;
if (unlikely(oob))
ops->oobretlen = ops->ooblen;
return ret;
}


再看看通用的页写函数
在函数int nand_scan_tail(struct mtd_info *mtd)内有两句代码:
......
if (!chip->write_page)
chip->write_page = nand_write_page;
......


如果用户没初始化页写函数,则使用默认函数nand_write_page,这就是需要分析的函数


static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
  const uint8_t *buf, int page, int cached, int raw)
{
int status;


chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);   //命令函数也有默认版本,对单次写地址的芯片如2440,6410,可以使用默认函数,但是不适合A10
                                                    //A10的地址是两个寄存器,每个32位,理论可以支持64位的地址宽度
                                                    //这里执行nand命令NAND_CMD_SEQIN,值是0x80
if (unlikely(raw))                                //观察调用的地方,可以看出 raw = 2    ===>  ops->mode == MTD_OOB_RAW 
chip->ecc.write_page_raw(mtd, chip, buf);       //ecc模块也有默认实现
else
chip->ecc.write_page(mtd, chip, buf);


/*
* Cached progamming disabled for now, Not sure if its worth the
* trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
*/
cached = 0;


if (!cached || !(chip->options & NAND_CACHEPRG)) {


chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);   ////这里执行nand命令NAND_CMD_PAGEPROG,值是0x10
status = chip->waitfunc(mtd, chip);               //等待写完成,这个需要用自己实现
* See if operation failed and additional status checks are
* available
*/
if ((status & NAND_STATUS_FAIL) && (chip->errstat))
status = chip->errstat(mtd, chip, FL_WRITING, status,
      page);


if (status & NAND_STATUS_FAIL)
return -EIO;
} else {
chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
}


#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
/* Send command to read back the data */
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);


if (chip->verify_buf(mtd, buf, mtd->writesize))
return -EIO;
#endif
return 0;
}


再看看默认的chip->ecc.write_page_raw函数干了什么事情
在函数int nand_scan_tail(struct mtd_info *mtd)内有两句代码:
......
if (!chip->ecc.write_page_raw)
chip->ecc.write_page_raw = nand_write_page_raw;
......
如果用户没初始化页写函数,则使用默认函数nand_write_page_raw,这就是需要分析的函数
这个函数将数据写入,写入什么位置呢?还要看看它调用的函数chip->write_buf
static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf)
{
chip->write_buf(mtd, buf, mtd->writesize); 
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
}


再看看默认的chip->write_buf函数
在函数int nand_scan_tail(struct mtd_info *mtd)内有两句代码:
......
if (!chip->write_buf)
chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
......
如果用户没初始化页写函数,8位操作则使用默认函数nand_write_buf,16位操作则使用默认函数nand_write_buf16,
cubieboard使用的nand芯片是8位的,就看看nand_write_buf函数
void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
int i;
struct nand_chip *chip = mtd->priv;


for (i = 0; i < len; i++)
writeb(buf[i], chip->IO_ADDR_W);
}
将数据写入寄存器chip->IO_ADDR_W,即写到nand缓存
从这里可以看出,上面的写操作过程就是:
命令0x80-->写数据-->命令0x10-->等待完成
查看cubieboard上面nand芯片K9GBG08U0A的数据手册,页写操作的过程真好相同,因此这个驱动可以使用
使用的前提就是需要实现一下几个函数:


片选函数:    chip->select_chip
命令操作函数:chip->cmdfunc


chip->waitfunc调用的两个函数:
芯片就绪函数:chip->dev_ready
字节读取函数:chip->read_byte


到这里,我都没有分析数据结构,只描述了调用流程
观察各个函数,贯穿整个过程的数据结构有两个
struct mtd_info

struct nand_chip

这两个数据结构在初始化分析时已经讲过了








原文地址:https://www.cnblogs.com/dyllove98/p/3194139.html