vpp sr mpls policy

https://vpp.flirble.org/stable-1801/srmpls_doc.html

vpp# show sr mpls policies                                                           
SR MPLS policies:
 
vpp# show version
vpp v20.05.1-release built by root on ff1827471f2b at 2020-07-15T20:14:36
vpp# 

vpp# mpls local-label add 102 non-eos via 192.168.123.2 GigabitEthernet7/0/0 out-labels 102                      
vpp# sh mpls fib 102                                                                       
MPLS-VRF:0, fib_index:0 locks:[CLI:2, ]
102:neos/21 fib:0 index:25 locks:2
  CLI refs:1 src-flags:added,contributing,active,
    path-list:[31] locks:2 flags:shared, uPRF-list:12 len:1 itfs:[1, ]
      path:[33] pl-index:31 ip4 weight=1 pref=0 attached-nexthop:  oper-flags:resolved,
        192.168.123.2 GigabitEthernet7/0/0
      [@0]: ipv4 via 192.168.123.2 GigabitEthernet7/0/0: mtu:9000 next:3 5254007355cd5254005d14110800
    Extensions:
     path:33  labels:[[102 pipe ttl:0 exp:0]]
 forwarding:   mpls-neos-chain
  [@0]: dpo-load-balance: [proto:mpls index:28 buckets:1 uRPF:12 to:[0:0]]
    [0] [@6]: mpls-label[@1]:[102:64:0:neos]
        [@1]: mpls via 192.168.123.2 GigabitEthernet7/0/0: mtu:9000 next:2 5254007355cd5254005d14118847
vpp# 
vpp# sr mpls policy add bsid 40001 next 16001 next 16002 next 16003
vpp# show sr mpls policies
SR MPLS policies:
[0].-   BSID: 40001
        TE disabled
        Type: Default
        Segment Lists:
        [0].- < 16001, 16002, 16003 > 
-----------
vpp# sr mpls policy del bsid 40001
vpp# show sr mpls policies        
SR MPLS policies:
vpp# 
vpp# sr mpls policy add bsid 40001 next 16001 next 16002 next 16003                                              
vpp# sh mpls fib 16001                                             
MPLS-VRF:0, fib_index:0 locks:[SR:1, CLI:2, recursive-resolution:1, ]
16001:neos/21 fib:0 index:27 locks:3
  recursive-resolution refs:1 src-flags:added,contributing,active, cover:-1
    path-list:[33] locks:2 flags:drop, uPRF-list:29 len:0 itfs:[]
      path:[35] pl-index:33 mpls weight=1 pref=0 special:  cfg-flags:drop,
        [@0]: dpo-drop mpls

 forwarding:   mpls-neos-chain
  [@0]: dpo-load-balance: [proto:mpls index:31 buckets:1 uRPF:29 to:[0:0]]
    [0] [@0]: dpo-drop mpls
vpp# sh mpls fib 16002
MPLS-VRF:0, fib_index:0 locks:[SR:1, CLI:2, recursive-resolution:1, ]
vpp# sh mpls fib 16003
MPLS-VRF:0, fib_index:0 locks:[SR:1, CLI:2, recursive-resolution:1, ]
vpp# show sr mpls policies                                         
SR MPLS policies:
[0].-   BSID: 40001
        TE disabled
        Type: Default
        Segment Lists:
        [0].- < 16001, 16002, 16003 > 
-----------
vpp# 

https://wiki.fd.io/view/VPP/MPLS_FIB

Basics
MPLS is not enabled by default. There are two steps to get started. First, create the default MPLS FIB:

mpls table add 0--------------------------不同于ip table add 2
With '0' being the magic number for the 'default' table (just like it is for IPv[46]). One can create other MPLS tables, but, unlike IP tables, one cannot 'bind' non-default MPLS tables to interfaces, in other words all MPLS packets received on an interface will always result in a lookup in the default table. One has to be more inventive to use the non-default tables...

Secondly, for *each* interface on which you wish to *receive* MPLS packets, that interface must be MPLS 'enabled'

set interface mpls GigEthernet0/0/0 enable
there is no equivalent enable for transmit, all that is required is to use an interface as an egress path.

Entries in the MPLS FIB can be display with:

 sh mpls fib [table X] [label]

MPLS FIB
There is a tight coupling between IP and MPLS forwarding. MPLS forwarding equivalence classes (FECs) are often an IP prefix – that is to say that traffic matching a given IP prefix is routed into a MPLS label switch path (LSP). It is thus necessary to be able to associated a given prefix/route with an [out-going] MPLS label that will be imposed when the packet is forwarded. This is configured as:

ip route add 1.1.1.1/32 via 10.10.10.10 GigE0/0/0 out-labels 33
packets matching 1.1.1.1/32 will be forwarded out GigE0/0/0 and have MPLS label 33 imposed. More than one out-going label can be specified. Out-going MPLS labels can be applied to recursive and non-recursive routes, e.g;

ip route add 2.2.2.0/24 via 1.1.1.1 out-labels 34
packets matching 2.2.2.0/24 will thus have two MPLS labels imposed; 34 and 33. This is the realisation of, e,g, an MPLS BGP VPNv4. To associate/allocate a local-label for a prefix, and thus have packets to that local-label forwarded equivalently to the prefix do;

mpls local-label 99 2.2.2.0/24
In the API this action is called a ‘bind’. The router receiving the MPLS encapsulated packets needs to be programmed with actions associated which each label value – this is the role of the MPLS FIB. The MPLS FIB Is a table, whose key is the MPLS label value and end-of-stack (EOS) bit, which stores the action to perform on packets with matching encapsulation. Currently supported actions are:

1)    Pop the label and perform an IPv[46] lookup in a specified table
2)    Pop the label and forward via a specified next-hop (this is penultimate-hop-pop, PHP)
3)    Swap the label and forward via a specified next-hop.
These can be programmed respectively by:

1)    mpls local-label 33 eos ip4-lookup-in-table X
2)    mpls local-label 33 [eos] via 10.10.10.10 GigE0/0/0
3)    mpls local-label 33 [eos] via 10.10.10.10 GigE0/0/0 out-labels 66
the latter is an example of an MPLS cross connect. Any description of a next-hop, recursive, non-recursive, labelled, non-labelled, etc, that is valid for an IP prefix, is also valid for an MPLS local-label. Note the use of the 'eos' keyword which indicates the programming is for the case when the label is end-of-stack. The last two operations can apply to both eos and non-eos packets, but the pop and IP lookup only to an eos packet.

MPLS VPN
To configure an MPLS VPN for a PE the follow example can be used.

Step 1; Configure routes to the iBGP peers - note these route MUST have out-going labels;

ip route add 10.0.0.1/32 via 192.168.1.2 Eth0 out-labels 33
ip route add 10.0.0.2/32 via 192.168.2.2 Eth0 out-labels 34
Step 2; Configure the customer 'VRF'

ip table add 2
Step 3; add a route via the iBGP peer[s] with the MPLS label advertised by that peer

ip route add table 2 10.10.10.0/24 via 10.0.0.2 next-hop-table 0 out-label 122
ip route add table 2 10.10.10.0/24 via 10.0.0.1 next-hop-table 0 out-label 121
Step 4; add a route via the eBGP peer

ip route add table 2 10.10.20.0/24 via 172.16.0.1 next-hop-table 2
Step 5; depending on the label allocation scheme used, add routes to the MPLS FIB to accept incoming labelled packets

1 per-prefix label scheme - this command 'binds' the label to the same forwarding as the IP route

mpls local-label 99 10.10.20.0/24 
2 per-CE label scheme - this pops the incoming label. Append config for 'out-labels' if so desired.

mpls local-label 99 via 172.16.0.1 next-hop-table 2
3 per-VRF label scheme

mpls local-label 99 via ip4-lookup-in-table 2
Tunnels
MPLS tunnels are unidirectional and can impose a stack of labels. They are 'normal' interfaces and thus can be used, for example, as the target for IP routes and L2 cross-connects. To construct a tunnel

mpls tunnel via 10.10.10.10 GigEthernet0/0/0 out-labels 33 44 55
and to then have that created tunnel to perform ECMP:

mpls tunnel mpls-tunnel0 via 10.10.10.11 GigEthernet0/0/0 out-labels 66 77 88
use

sh mpls tunnel [X]
to see the monster you have created. An MPLS tunnel interface is an interface like any other and now ready for use with the usual set of interface commands, e.g.:

set interface state mpls-tunnel0 up
set interface ip address mpls-tunnel0 192.168.1.1/30
原文地址:https://www.cnblogs.com/dream397/p/13540328.html