Java中的常见锁(公平和非公平锁、可重入锁和不可重入锁、自旋锁、独占锁和共享锁)

公平和非公平锁

  • 公平锁:是指多个线程按照申请的顺序来获取值。在并发环境中,每一个线程在获取锁时会先查看此锁维护的等待队列,如果为空,或者当前线程是等待队列的第一个就占有锁,否者就会加入到等待队列中,以后会按照 FIFO 的规则获取锁
  • 非公平锁:是指多个线程获取值的顺序并不是按照申请锁的顺序,有可能后申请的线程比先申请的线程优先获取锁。在并发环境中一上来就尝试占有锁,如果失败再进行排队,可能会造成优先级翻转或者饥饿现象
    // 常用的ReentrantLock无参构造默认是非公平锁

    /**
     * Creates an instance of {@code ReentrantLock}.
     * This is equivalent to using {@code ReentrantLock(false)}.
     */
    public ReentrantLock() {
        sync = new NonfairSync();
    }

    /**
     * Creates an instance of {@code ReentrantLock} with the
     * given fairness policy.
     *
     * @param fair {@code true} if this lock should use a fair ordering policy
     */
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

可重入锁和不可重入锁

  • 可重入锁:指的是同一个线程外层函数获得锁之后,内层仍然能获取到该锁,在同一个线程在外层方法获取锁的时候,在进入内层方法或会自动获取该锁 
  • 不可重入锁: 即若当前线程执行某个方法已经获取了该锁,那么在方法中尝试再次获取锁时,就会获取不到被阻塞
/**
 * 可重入锁实现
 */
public class ReentrantLock {
    boolean isLocked = false;
    Thread lockedBy = null;
    int lockedCount = 0;
    public synchronized void lock() throws InterruptedException {
        Thread thread = Thread.currentThread();
        while (isLocked && lockedBy != thread) {
            wait();
        }
        isLocked = true;
        lockedCount++;
        lockedBy = thread;
    }
    
    public synchronized void unlock() {
        if (Thread.currentThread() == lockedBy) {
            lockedCount--;
            if (lockedCount == 0) {
                isLocked = false;
                notify();
            }
        }
    }
}

/**
 * 测试类
 */
public class Count {
    ReentrantLock lock = new ReentrantLock();
    public void print() throws InterruptedException{
        lock.lock();
        doAdd();
        lock.unlock();
    }

    private void doAdd() throws InterruptedException {
        lock.lock();
        // do something
        System.out.println("ReentrantLock");
        lock.unlock();
    }

    /**
     * 发现可以输出 ReentrantLock,我们设计两个线程调用 print() 方法,第一个线程调用 print() 方法获取锁,进入 lock() 方法,由于初始 lockedBy 是 null,所以不会进入 while 而挂起当前线程,而是是增量 lockedCount 并记录 lockBy 为第一个线程。接着第一个线程进入 doAdd() 方法,由于同一进程,所以不会进入 while 而挂起,接着增量 lockedCount,当第二个线程尝试lock,由于 isLocked=true,所以他不会获取该锁,直到第一个线程调用两次 unlock() 将 lockCount 递减为0,才将标记为 isLocked 设置为 false
     */    
    public static void main(String[] args) throws InterruptedException {
        Count count = new Count();
        count.print();
    }
}
/**
 * 不可重入锁实现
 */
public class NotReentrantLock {
    private boolean isLocked = false;
    public synchronized void lock() throws InterruptedException {
        while (isLocked) {
            wait();
        }
        isLocked = true;
    }
    public synchronized void unlock() {
        isLocked = false;
        notify();
    }
}

/**
 * 测试
 */
public class Count {
    NotReentrantLock lock = new NotReentrantLock();
    public void print() throws InterruptedException{
        lock.lock();
        doAdd();
        lock.unlock();
    }

    private void doAdd() throws InterruptedException {
        lock.lock();
        // do something
        lock.unlock();
    }

    /**
     * 当前线程执行print()方法首先获取lock,接下来执行doAdd()方法就无法执行doAdd()中的逻辑,必须先释放锁。这个例子很好的说明了不可重入锁
     */
    public static void main(String[] args) throws InterruptedException {
        Count count = new Count();
        count.print();
    }
}

  synchronized 和 ReentrantLock 都是可重入锁

自旋锁

  概念:是指定尝试获取锁的线程不会立即堵塞,而是采用循环的方式去尝试获取锁,这样的好处是减少线程上线文切换的消耗,缺点就是循环会消耗 CPU

/**
 * 自选锁实现
 */
public class SpinLock {
    private AtomicReference<Thread> atomicReference = new AtomicReference<>();
    private void lock () {
        System.out.println(Thread.currentThread() + " coming...");
        while (!atomicReference.compareAndSet(null, Thread.currentThread())) {
            // loop
        }
    }

    private void unlock() {
        Thread thread = Thread.currentThread();
        atomicReference.compareAndSet(thread, null);
        System.out.println(thread + " unlock...");
    }

    public static void main(String[] args) throws InterruptedException {
        SpinLock spinLock = new SpinLock();
        new Thread(() -> {
            spinLock.lock();
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("hahaha");
            spinLock.unlock();

        }).start();

        Thread.sleep(1);

        new Thread(() -> {
            spinLock.lock();
            System.out.println("hehehe");
            spinLock.unlock();
        }).start();
    }
}

/**
* 输出内容:
* Thread[Thread-0,5,main] coming... * Thread[Thread-1,5,main] coming... * hahaha * Thread[Thread-0,5,main] unlock... * hehehe * Thread[Thread-1,5,main] unlock... * * 获取锁的时候,如果原子引用为空就获取锁,不为空表示有人获取了锁,就循环等待,借鉴CAS底层实现 */

独占锁(写锁)/共享锁(读锁)

  • 独占锁:指该锁一次只能被一个线程持有
  • 共享锁:该锁可以被多个线程持有

  对于 ReentrantLock 和 synchronized 都是独占锁;对于 ReentrantReadWriteLock 其读锁是共享锁而写锁是独占锁。读锁的共享可保证并发读是非常高效的,读写、写读和写写的过程是互斥的

/**
 * 读写锁的应用
 */
public class MyCache {

    private volatile Map<String, Object> map = new HashMap<>();

    private ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
    WriteLock writeLock = lock.writeLock();
    ReadLock readLock = lock.readLock();

    /**
     * 独占锁(写锁)
     */
    public void put(String key, Object value) {
        try {
            writeLock.lock();
            System.out.println(Thread.currentThread().getName() + " 正在写入...");
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            map.put(key, value);
            System.out.println(Thread.currentThread().getName() + " 写入完成,写入结果是 " + value);
        } finally {
            writeLock.unlock();
        }
    }

   /**
     * 共享锁(读锁)
     */
    public void get(String key) {
        try {
            readLock.lock();
            System.out.println(Thread.currentThread().getName() + " 正在读...");
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            Object res = map.get(key);
            System.out.println(Thread.currentThread().getName() + " 读取完成,读取结果是 " + res);
        } finally {
            readLock.unlock();
        }
    }
}

/**
 * 测试代码
 */
public class ReadWriteLockDemo {
    public static void main(String[] args) {
        MyCache cache = new MyCache();

        for (int i = 0; i < 5; i++) {
            final int temp = i;
            new Thread(() -> {
                cache.put(temp + "", temp + "");
            }).start();
        }

        for (int i = 0; i < 5; i++) {
            final int temp = i;
            new Thread(() -> {
                cache.get(temp + "");
            }).start();
        }
    }
}
执行结果:
Thread-0 正在写入... Thread-0 写入完成,写入结果是 0 Thread-1 正在写入... Thread-1 写入完成,写入结果是 1 Thread-2 正在写入... Thread-2 写入完成,写入结果是 2 Thread-3 正在写入... Thread-3 写入完成,写入结果是 3 Thread-4 正在写入... Thread-4 写入完成,写入结果是 4 Thread-5 正在读... Thread-7 正在读... Thread-8 正在读... Thread-6 正在读... Thread-9 正在读... Thread-5 读取完成,读取结果是 0 Thread-7 读取完成,读取结果是 2 Thread-8 读取完成,读取结果是 3 Thread-6 读取完成,读取结果是 1 Thread-9 读取完成,读取结果是 4 能保证读写、写读和写写的过程是互斥的时候是独享的,读读的时候是共享的
原文地址:https://www.cnblogs.com/ding-dang/p/13152559.html