强化学习中atari游戏环境下帧的预处理操作

在网上找到一个Rainbow算法的代码(https://gitee.com/devilmaycry812839668/Rainbow),在里面找到了atari游戏环境下帧的预处理操作。

具体代码地址:

https://gitee.com/devilmaycry812839668/Rainbow/blob/master/env.py

# -*- coding: utf-8 -*-
from collections import deque
import random
import atari_py
import cv2
import torch


class Env():
    def __init__(self, args):
        self.device = args.device
        self.ale = atari_py.ALEInterface()
        self.ale.setInt('random_seed', args.seed)
        self.ale.setInt('max_num_frames_per_episode', args.max_episode_length)
        self.ale.setFloat('repeat_action_probability', 0)  # Disable sticky actions
        self.ale.setInt('frame_skip', 0)
        self.ale.setBool('color_averaging', False)
        self.ale.loadROM(atari_py.get_game_path(args.game))  # ROM loading must be done after setting options
        actions = self.ale.getMinimalActionSet()
        self.actions = dict([i, e] for i, e in zip(range(len(actions)), actions))
        self.lives = 0  # Life counter (used in DeepMind training)
        self.life_termination = False  # Used to check if resetting only from loss of life
        self.window = args.history_length  # Number of frames to concatenate
        self.state_buffer = deque([], maxlen=args.history_length)
        self.training = True  # Consistent with model training mode

    def _get_state(self):
        state = cv2.resize(self.ale.getScreenGrayscale(), (84, 84), interpolation=cv2.INTER_LINEAR)
        return torch.tensor(state, dtype=torch.float32, device=self.device).div_(255)

    def _reset_buffer(self):
        for _ in range(self.window):
            self.state_buffer.append(torch.zeros(84, 84, device=self.device))

    def reset(self):
        if self.life_termination:
            self.life_termination = False  # Reset flag
            self.ale.act(0)  # Use a no-op after loss of life
        else:
            # Reset internals
            self._reset_buffer()
            self.ale.reset_game()
            # Perform up to 30 random no-ops before starting
            for _ in range(random.randrange(30)):
                self.ale.act(0)  # Assumes raw action 0 is always no-op
                if self.ale.game_over():
                    self.ale.reset_game()
        # Process and return "initial" state
        observation = self._get_state()
        self.state_buffer.append(observation)
        self.lives = self.ale.lives()
        return torch.stack(list(self.state_buffer), 0)

    def step(self, action):
        # Repeat action 4 times, max pool over last 2 frames
        frame_buffer = torch.zeros(2, 84, 84, device=self.device)
        reward, done = 0, False
        for t in range(4):
            reward += self.ale.act(self.actions.get(action))
            if t == 2:
                frame_buffer[0] = self._get_state()
            elif t == 3:
                frame_buffer[1] = self._get_state()
            done = self.ale.game_over()
            if done:
                break
        observation = frame_buffer.max(0)[0]
        self.state_buffer.append(observation)
        # Detect loss of life as terminal in training mode
        if self.training:
            lives = self.ale.lives()
            if lives < self.lives and lives > 0:  # Lives > 0 for Q*bert
                self.life_termination = not done  # Only set flag when not truly done
                done = True
            self.lives = lives
        # Return state, reward, done
        return torch.stack(list(self.state_buffer), 0), reward, done

    # Uses loss of life as terminal signal
    def train(self):
        self.training = True

    # Uses standard terminal signal
    def eval(self):
        self.training = False

    def action_space(self):
        return len(self.actions)

    def render(self):
        cv2.imshow('screen', self.ale.getScreenRGB()[:, :, ::-1])
        cv2.waitKey(1)

    def close(self):
        cv2.destroyAllWindows()

该代码主要使用 atari_py 库实现游戏环境运行及图像的采集。

上面的代码为pytorch深度学习计算框架提供支持,同时可以经过适当的更改同样可以为TensorFlow等其他深度计算框架提供支持。

###  创建atari游戏环境的连接对象

### 为连接对象ale设置属性, 设置随机种子:random_seed ,每一个回合最多的帧个数(最多step数):max_num_frames_per_episode

### 执行动作传递给游戏环境时是否对上一个动作进行重复(迟滞动作):repeat_action_probability ,   frame_skip:是否跳帧(中间帧使用重复动作)

 打印游戏路径:

 atari_py.get_game_path(args.game)

 

为ale游戏连接对象加载游戏仿真环境的二进制文件:

获得ale的灰度值图像:

将ale的RGB图像更改为BGR图像以使cv2进行显示:

手动编写跳帧操作:

相邻两帧图像取最大值,避免图像闪烁问题:

对特殊游戏(一回合游戏有多条游戏生命数)设置 training 和 eval 两种模式, training模式下将每个生命数内的游戏帧提取为一个回合。

整体回合没有结束,但是部分回合结束(游戏生命数减少),使结束画面和开始画面连接:

游戏回合开始时进行一定步数的随机操作:

游戏回合内新生命数下游戏开始时进行随机操作,否则游戏游戏无法进行下一步操作:

扩展:

 gym atari游戏的环境设置问题:Breakout-v0, Breakout-v4, BreakoutNoFrameskip-v4和BreakoutDeterministic-v4的区别

https://www.cnblogs.com/devilmaycry812839668/p/14665402.html

本博客是博主个人学习时的一些记录,不保证是为原创,个别文章加入了转载的源地址还有个别文章是汇总网上多份资料所成,在这之中也必有疏漏未加标注者,如有侵权请与博主联系。
原文地址:https://www.cnblogs.com/devilmaycry812839668/p/14863855.html