Java设计模式--单列设计模式

单列设计模式

单列设计模式--介绍

所谓类的单例设计模式,就是采取一定的方法保证在整个的软件系统中,
对某个类只能存在一个对象实例,并且该类只提供一个取得其对象实例的方法(静态方法)。
 
比如Hibernate的SessionFactory,它充当数据存储源的代理,并负责创建Session
对象。SessionFactory并不是轻量级的,一般情况下,一个项目通常只需要一个
SessionFactory就够,这是就会使用到单例模式。

单列设计模式--八种写法

1) 饿汉式(静态常量)
2) 饿汉式(静态代码块)
3) 懒汉式(线程不安全)
4) 懒汉式(线程安全,同步方法)
5) 懒汉式(线程安全,同步代码块)-----错误案例提示,不能使用
6) 双重检查
7) 静态内部类
8) 枚举

具体实现
1) 构造器私有化 (防止 new )
2) 类的内部创建对象
3) 向外暴露一个静态的公共方法。getInstance
4) 代码实现

1) 饿汉式(静态常量)

代码实现:

package com.atguigu.singleton.type1;

public class SingletonTest01 {

    public static void main(String[] args) {
        //测试
        Singleton instance = Singleton.getInstance();
        Singleton instance2 = Singleton.getInstance();
        System.out.println(instance == instance2); // true
        System.out.println("instance.hashCode=" + instance.hashCode());
        System.out.println("instance2.hashCode=" + instance2.hashCode());
    }

}

//饿汉式(静态变量)

class Singleton {
    
    //1. 构造器私有化, 外部能new
    private Singleton() {
    }
    
    //2.本类内部创建对象实例
    private final static Singleton instance = new Singleton();
    
    //3. 提供一个公有的静态方法,返回实例对象
    public static Singleton getInstance() {
        return instance;
    }
    
}
静态常量

优缺点说明:

1) 优点:这种写法比较简单,就是在类装载的时候就完成实例化。避免了线程同步问题。
2) 缺点:在类装载的时候就完成实例化,没有达到Lazy Loading的效果。如果从始至终从未使用过这个实例,则会造成内存的浪费
3) 这种方式基于classloder机制避免了多线程的同步问题,不过,instance在类装载时就实例化,在单例模式中大多数都是调用getInstance方法, 但是导致类装载
的原因有很多种,因此不能确定有其他的方式(或者其他的静态方法)导致类
装载,这时候初始化instance就没有达到lazy loading的效果

结论:

这种单例模式可用,可能造成内存浪费

2) 饿汉式(静态代码块)

代码实现:

package com.atguigu.singleton.type2;

public class SingletonTest02 {

    public static void main(String[] args) {
        //测试
        Singleton instance = Singleton.getInstance();
        Singleton instance2 = Singleton.getInstance();
        System.out.println(instance == instance2); // true
        System.out.println("instance.hashCode=" + instance.hashCode());
        System.out.println("instance2.hashCode=" + instance2.hashCode());
    }

}

//饿汉式(静态变量)

class Singleton {
    
    //1. 构造器私有化, 外部能new
    private Singleton() {
        
    }
    

    //2.本类内部创建对象实例
    private  static Singleton instance;
    
    static { // 在静态代码块中,创建单例对象
        instance = new Singleton();
    }
    
    //3. 提供一个公有的静态方法,返回实例对象
    public static Singleton getInstance() {
        return instance;
    }
    
}
静态代码块

优缺点说明:

这种方式和上面的方式其实类似,只不过将类实例化的过程放在了静态代码块
中,也是在类装载的时候,就执行静态代码块中的代码,初始化类的实例。优
缺点和上面是一样的

结论:

这种单例模式可用,但是可能造成内存浪费

3) 懒汉式(线程不安全)

代码实现:

package com.atguigu.singleton.type3;


public class SingletonTest03 {

    public static void main(String[] args) {
        System.out.println("懒汉式1 , 线程不安全~");
        Singleton instance = Singleton.getInstance();
        Singleton instance2 = Singleton.getInstance();
        System.out.println(instance == instance2); // true
        System.out.println("instance.hashCode=" + instance.hashCode());
        System.out.println("instance2.hashCode=" + instance2.hashCode());
    }

}

class Singleton {
    private static Singleton instance;
    
    private Singleton() {}
    
    //提供一个静态的公有方法,当使用到该方法时,才去创建 instance
    //即懒汉式
    public static Singleton getInstance() {
        if(instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}
View Code

优缺点说明:

1) 起到了Lazy Loading的效果,但是只能在单线程下使用。
2) 如果在多线程下,一个线程进入了if (singleton == null)判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例。所以在多线程环境下不可使用这种方式

结论:

  在实际开发中,不要使用这种方式.

4) 懒汉式(线程安全,同步方法)

代码实现:

package com.atguigu.singleton.type4;


public class SingletonTest04 {

    public static void main(String[] args) {
        System.out.println("懒汉式2 , 线程安全~");
        Singleton instance = Singleton.getInstance();
        Singleton instance2 = Singleton.getInstance();
        System.out.println(instance == instance2); // true
        System.out.println("instance.hashCode=" + instance.hashCode());
        System.out.println("instance2.hashCode=" + instance2.hashCode());
    }

}

// 懒汉式(线程安全,同步方法)
class Singleton {
    private static Singleton instance;
    
    private Singleton() {}
    
    //提供一个静态的公有方法,加入同步处理的代码,解决线程安全问题
    //即懒汉式
    public static synchronized Singleton getInstance() {
        if(instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}
View Code

优缺点说明:

1) 解决了线程不安全问题
2) 效率太低了,每个线程在想获得类的实例时候,执行getInstance()方法都要进行同步。而其实这个方法只执行一次实例化代码就够了,后面的想获得该类实例,直接return就行了。方法进行同步效率太低

结论:

 在实际开发中,不要使用这种方式.

5)懒汉式(线程安全,同步代码块)-----错误案例提示,不能使用

1 public static  Singleton getInstance() {
2         if(instance == null) {
3             synchronized (Singleton.class) { 
4                 instance = new Singleton();
5             }
6         }
7         return instance;
8     }

优缺点说明:

1) 这种方式,本意是想对第四种实现方式的改进,因为前面同步方法效率太低,改为同步产生实例化的的代码块
2) 但是这种同步并不能起到线程同步的作用。跟第3种实现方式遇到的情形一致,假如一个线程进入了if (singleton == null)判断语句块,还未来得及往下执行,
另一个线程也通过了这个判断语句,这时便会产生多个实例

结论:

在实际开发中,不能使用这种方式

6) 双重检查

代码

package com.atguigu.singleton.type6;


public class SingletonTest06 {

    public static void main(String[] args) {
        System.out.println("双重检查");
        Singleton instance = Singleton.getInstance();
        Singleton instance2 = Singleton.getInstance();
        System.out.println(instance == instance2); // true
        System.out.println("instance.hashCode=" + instance.hashCode());
        System.out.println("instance2.hashCode=" + instance2.hashCode());
        
    }

}

// 懒汉式(线程安全,同步方法)
class Singleton {
    private static volatile Singleton instance;
    
    private Singleton() {}
    
    //提供一个静态的公有方法,加入双重检查代码,解决线程安全问题, 同时解决懒加载问题
    //同时保证了效率, 推荐使用
    
    public static synchronized Singleton getInstance() {
        if(instance == null) {
            synchronized (Singleton.class) {
                if(instance == null) {
                    instance = new Singleton();
                }
            }
            
        }
        return instance;
    }
}
View Code

优缺点说明:

1) Double-Check概念是多线程开发中常使用到的,如代码中所示,我们进行了两次if (singleton == null)检查,这样就可以保证线程安全了。
2) 这样,实例化代码只用执行一次,后面再次访问时,判断if (singleton == null),直接return实例化对象,也避免的反复进行方法同步.
3) 线程安全;延迟加载;效率较高

结论:

在实际开发中,推荐使用这种单例设计模式

7) 静态内部类

代码

package com.atguigu.singleton.type7;


public class SingletonTest07 {

    public static void main(String[] args) {
        System.out.println("使用静态内部类完成单例模式");
        Singleton instance = Singleton.getInstance();
        Singleton instance2 = Singleton.getInstance();
        System.out.println(instance == instance2); // true
        System.out.println("instance.hashCode=" + instance.hashCode());
        System.out.println("instance2.hashCode=" + instance2.hashCode());
        
    }

}

// 静态内部类完成, 推荐使用
class Singleton {
    private static volatile Singleton instance;
    
    //构造器私有化
    private Singleton() {}
    
    //写一个静态内部类,该类中有一个静态属性 Singleton
    private static class SingletonInstance {
        private static final Singleton INSTANCE = new Singleton(); 
    }
    
    //提供一个静态的公有方法,直接返回SingletonInstance.INSTANCE
    
    public static synchronized Singleton getInstance() {
        
        return SingletonInstance.INSTANCE;
    }
}
View Code

优缺点说明:

1) 这种方式采用了类装载的机制来保证初始化实例时只有一个线程。
2) 静态内部类方式在Singleton类被装载时并不会立即实例化,而是在需要实例化时,调用getInstance方法,才会装载SingletonInstance类,从而完成Singleton的实例化。
3) 类的静态属性只会在第一次加载类的时候初始化,所以在这里,JVM帮助我们保证了线程的安全性,在类进行初始化时,别的线程是无法进入的。
4) 优点:避免了线程不安全,利用静态内部类特点实现延迟加载,效率高

结论:

推荐使用

8) 枚举

代码

package com.atguigu.singleton.type8;

public class SingletonTest08 {
    public static void main(String[] args) { 
        Singleton instance = Singleton.INSTANCE;
        Singleton instance2 = Singleton.INSTANCE;
        System.out.println(instance == instance2);
        
        System.out.println(instance.hashCode());
        System.out.println(instance2.hashCode());
        
        instance.sayOK();
    }
}

//使用枚举,可以实现单例, 推荐
enum Singleton {
    INSTANCE; //属性
    public void sayOK() {
        System.out.println("ok~");
    }
}
View Code

优缺点说明:

1) 这借助JDK1.5中添加的枚举来实现单例模式。不仅能避免多线程同步问题,而
且还能防止反序列化重新创建新的对象。
2) 这种方式是Effective Java作者Josh Bloch 提倡的方式

结论:

推荐使用

单列设计模式--在JDK应用

单列设计模式--注意事项和细节说明

1) 单例模式保证了 系统内存中该类只存在一个对象,节省了系统资源,对于一些需要频繁创建销毁的对象,使用单例模式可以提高系统性能
2) 当想实例化一个单例类的时候,必须要记住使用相应的获取对象的方法,而不是使用new
3) 单例模式使用的场景:需要频繁的进行创建和销毁的对象、创建对象时耗时过多或耗费资源过多(即:重量级对象),但又经常用到的对象、工具类对象、频繁访问数
据库或文件的对象(比如数据源、session工厂等)
原文地址:https://www.cnblogs.com/denghy-301/p/13158806.html