task4 建模与调参 打卡

Datawhale 零基础入门数据挖掘-Task4 建模调参¶
四、建模与调参

4.1 学习目标
了解常用的机器学习模型,并掌握机器学习模型的建模与调参流程
完成相应学习打卡任务
4.2 内容介绍
线性回归模型:
线性回归对于特征的要求;
处理长尾分布;
理解线性回归模型;
模型性能验证:
评价函数与目标函数;
交叉验证方法;
留一验证方法;
针对时间序列问题的验证;
绘制学习率曲线;
绘制验证曲线;
嵌入式特征选择:
Lasso回归;
Ridge回归;
决策树;
模型对比:
常用线性模型;
常用非线性模型;
模型调参:
贪心调参方法;
网格调参方法;
贝叶斯调参方法;
4.3 相关原理介绍与推荐
由于相关算法原理篇幅较长,本文推荐了一些博客与教材供初学者们进行学习。

4.3.1 线性回归模型
https://zhuanlan.zhihu.com/p/49480391

4.3.2 决策树模型
https://zhuanlan.zhihu.com/p/65304798

4.3.3 GBDT模型
https://zhuanlan.zhihu.com/p/45145899

4.3.4 XGBoost模型
https://zhuanlan.zhihu.com/p/86816771

4.3.5 LightGBM模型
https://zhuanlan.zhihu.com/p/89360721

4.3.6 推荐教材:
《机器学习》 https://book.douban.com/subject/26708119/
《统计学习方法》 https://book.douban.com/subject/10590856/
《Python大战机器学习》 https://book.douban.com/subject/26987890/
《面向机器学习的特征工程》 https://book.douban.com/subject/26826639/
《数据科学家访谈录》 https://book.douban.com/subject/30129410/

代码示例
4.4.1 读取数据

1
import pandas as pd
2
import numpy as np
3
import warnings
4
warnings.filterwarnings('ignore')
reduce_mem_usage 函数通过调整数据类型,帮助我们减少数据在内存中占用的空间

1
def reduce_mem_usage(df):
2
""" iterate through all the columns of a dataframe and modify the data type
3
to reduce memory usage.
4
"""
5
start_mem = df.memory_usage().sum()
6
print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
7

8
for col in df.columns:
9
col_type = df[col].dtype
10

11
if col_type != object:
12
c_min = df[col].min()
13
c_max = df[col].max()
14
if str(col_type)[:3] == 'int':
15
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
16
df[col] = df[col].astype(np.int8)
17
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
18
df[col] = df[col].astype(np.int16)
19
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
20
df[col] = df[col].astype(np.int32)
21
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
22
df[col] = df[col].astype(np.int64)
23
else:
24
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
25
df[col] = df[col].astype(np.float16)
26
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
27
df[col] = df[col].astype(np.float32)
28
else:
29
df[col] = df[col].astype(np.float64)
30
else:
31
df[col] = df[col].astype('category')
32

33
end_mem = df.memory_usage().sum()
34
print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
35
print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
36
return df

1
sample_feature = reduce_mem_usage(pd.read_csv('data_for_tree.csv'))
Memory usage of dataframe is 60507328.00 MB

Memory usage after optimization is: 15724107.00 MB

Decreased by 74.0%

1
continuous_feature_names = [x for x in sample_feature.columns if x not in ['price','brand','model','brand']]
4.4.2 线性回归 & 五折交叉验证 & 模拟真实业务情况

1
sample_feature = sample_feature.dropna().replace('-', 0).reset_index(drop=True)
2
sample_feature['notRepairedDamage'] = sample_feature['notRepairedDamage'].astype(np.float32)
3
train = sample_feature[continuous_feature_names + ['price']]
4

5
train_X = train[continuous_feature_names]
6
train_y = train['price']
4.4.2 - 1 简单建模

1
from sklearn.linear_model import LinearRegression

1
model = LinearRegression(normalize=True)

1
model = model.fit(train_X, train_y)
查看训练的线性回归模型的截距(intercept)与权重(coef)

1
'intercept:'+ str(model.intercept_)
2

3
sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)
[('v_6', 3342612.384537345),
, ('v_8', 684205.534533214),
, ('v_9', 178967.94192530424),
, ('v_7', 35223.07319016895),
, ('v_5', 21917.550249749802),
, ('v_3', 12782.03250792227),
, ('v_12', 11654.925634146672),
, ('v_13', 9884.194615297649),
, ('v_11', 5519.182176035517),
, ('v_10', 3765.6101415594258),
, ('gearbox', 900.3205339198406),
, ('fuelType', 353.5206495542567),
, ('bodyType', 186.51797317460046),
, ('city', 45.17354204168846),
, ('power', 31.163045441455335),
, ('brand_price_median', 0.535967111869784),
, ('brand_price_std', 0.4346788365040235),
, ('brand_amount', 0.15308295553300566),
, ('brand_price_max', 0.003891831020467389),
, ('seller', -1.2684613466262817e-06),
, ('offerType', -4.759058356285095e-06),
, ('brand_price_sum', -2.2430642281682917e-05),
, ('name', -0.00042591632723759166),
, ('used_time', -0.012574429533889028),
, ('brand_price_average', -0.414105722833381),
, ('brand_price_min', -2.3163823428971835),
, ('train', -5.392535065078232),
, ('power_bin', -59.24591853031839),
, ('v_14', -233.1604256172217),
, ('kilometer', -372.96600915402496),
, ('notRepairedDamage', -449.29703564695365),
, ('v_0', -1490.6790578168238),
, ('v_4', -14219.648899108111),
, ('v_2', -16528.55239086934),
, ('v_1', -42869.43976200439)]

1
from matplotlib import pyplot as plt

1
subsample_index = np.random.randint(low=0, high=len(train_y), size=50)
绘制特征v_9的值与标签的散点图,图片发现模型的预测结果(蓝色点)与真实标签(黑色点)的分布差异较大,且部分预测值出现了小于0的情况,说明我们的模型存在一些问题

1
plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
2
plt.scatter(train_X['v_9'][subsample_index], model.predict(train_X.loc[subsample_index]), color='blue')
3
plt.xlabel('v_9')
4
plt.ylabel('price')
5
plt.legend(['True Price','Predicted Price'],loc='upper right')
6
print('The predicted price is obvious different from true price')
7
plt.show()
The predicted price is obvious different from true price

通过作图我们发现数据的标签(price)呈现长尾分布,不利于我们的建模预测。原因是很多模型都假设数据误差项符合正态分布,而长尾分布的数据违背了这一假设。参考博客:https://blog.csdn.net/Noob_daniel/article/details/76087829

1
import seaborn as sns
2
print('It is clear to see the price shows a typical exponential distribution')
3
plt.figure(figsize=(15,5))
4
plt.subplot(1,2,1)
5
sns.distplot(train_y)
6
plt.subplot(1,2,2)
7
sns.distplot(train_y[train_y < np.quantile(train_y, 0.9)])
It is clear to see the price shows a typical exponential distribution
<matplotlib.axes._subplots.AxesSubplot at 0x1b33efb2f98>

在这里我们对标签进行了
l
o
g
(
x
+
1
)
变换,使标签贴近于正态分布

1
train_y_ln = np.log(train_y + 1)

1
import seaborn as sns
2
print('The transformed price seems like normal distribution')
3
plt.figure(figsize=(15,5))
4
plt.subplot(1,2,1)
5
sns.distplot(train_y_ln)
6
plt.subplot(1,2,2)
7
sns.distplot(train_y_ln[train_y_ln < np.quantile(train_y_ln, 0.9)])
The transformed price seems like normal distribution
<matplotlib.axes._subplots.AxesSubplot at 0x1b33f077160>

1
model = model.fit(train_X, train_y_ln)
2

3
print('intercept:'+ str(model.intercept_))
4
sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)
intercept:23.515920686637713
[('v_9', 6.043993029165403),
, ('v_12', 2.0357439855551394),
, ('v_11', 1.3607608712255672),
, ('v_1', 1.3079816298861897),
, ('v_13', 1.0788833838535354),
, ('v_3', 0.9895814429387444),
, ('gearbox', 0.009170812023421397),
, ('fuelType', 0.006447089787635784),
, ('bodyType', 0.004815242907679581),
, ('power_bin', 0.003151801949447194),
, ('power', 0.0012550361843629999),
, ('train', 0.0001429273782925814),
, ('brand_price_min', 2.0721302299502698e-05),
, ('brand_price_average', 5.308179717783439e-06),
, ('brand_amount', 2.8308531339942507e-06),
, ('brand_price_max', 6.764442596115763e-07),
, ('offerType', 1.6765966392995324e-10),
, ('seller', 9.308109838457312e-12),
, ('brand_price_sum', -1.3473184925468486e-10),
, ('name', -7.11403461065247e-08),
, ('brand_price_median', -1.7608143661053008e-06),
, ('brand_price_std', -2.7899058266986454e-06),
, ('used_time', -5.6142735899344175e-06),
, ('city', -0.0024992974087053223),
, ('v_14', -0.012754139659375262),
, ('kilometer', -0.013999175312751872),
, ('v_0', -0.04553774829634237),
, ('notRepairedDamage', -0.273686961116076),
, ('v_7', -0.7455902679730504),
, ('v_4', -0.9281349233755761),
, ('v_2', -1.2781892166433606),
, ('v_5', -1.5458846136756323),
, ('v_10', -1.8059217242413748),
, ('v_8', -42.611729973490604),
, ('v_6', -241.30992120503035)]
再次进行可视化,发现预测结果与真实值较为接近,且未出现异常状况
plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
plt.scatter(train_X['v_9'][subsample_index], np.exp(model.predict(train_X.loc[subsample_index])), color='blue')
plt.xlabel('v_9')
plt.ylabel('price')
plt.legend(['True Price','Predicted Price'],loc='upper right')
print('The predicted price seems normal after np.log transforming')
plt.show()
The predicted price seems normal after np.log transforming

5.4.2 - 2 五折交叉验证
在使用训练集对参数进行训练的时候,经常会发现人们通常会将一整个训练集分为三个部分(比如mnist手写训练集)。一般分为:训练集(train_set),评估集(valid_set),测试集(test_set)这三个部分。这其实是为了保证训练效果而特意设置的。其中测试集很好理解,其实就是完全不参与训练的数据,仅仅用来观测测试效果的数据。而训练集和评估集则牵涉到下面的知识了。

因为在实际的训练中,训练的结果对于训练集的拟合程度通常还是挺好的(初始条件敏感),但是对于训练集之外的数据的拟合程度通常就不那么令人满意了。因此我们通常并不会把所有的数据集都拿来训练,而是分出一部分来(这一部分不参加训练)对训练集生成的参数进行测试,相对客观的判断这些参数对训练集之外的数据的符合程度。这种思想就称为交叉验证(Cross Validation)

from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_absolute_error, make_scorer
def log_transfer(func):
def wrapper(y, yhat):
result = func(np.log(y), np.nan_to_num(np.log(yhat)))
return result
return wrapper
scores = cross_val_score(model, X=train_X, y=train_y, verbose=1, cv = 5, scoring=make_scorer(log_transfer(mean_absolute_error)))
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 1.1s finished
使用线性回归模型,对未处理标签的特征数据进行五折交叉验证(Error 1.36)

print('AVG:', np.mean(scores))
AVG: 1.3641908155886227
使用线性回归模型,对处理过标签的特征数据进行五折交叉验证(Error 0.19)

scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=1, cv = 5, scoring=make_scorer(mean_absolute_error))
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 1.1s finished
print('AVG:', np.mean(scores))
AVG: 0.19382863663604424
scores = pd.DataFrame(scores.reshape(1,-1))
scores.columns = ['cv' + str(x) for x in range(1, 6)]
scores.index = ['MAE']
scores

原文地址:https://www.cnblogs.com/david750/p/12616360.html