红黑树

原理请参考《算法导论》

定义一个红黑树类

template <typename T>
class rb_tree {
public:
    typedef struct _rb_type {
        _rb_type(_rb_type *_left, _rb_type *_right, _rb_type *_p, bool cl, T k) :
            left(_left), right(_right), p(_p), color(cl), key(k) {}
        bool color;//true for red, false for black
        T key;
        _rb_type *left, *right, *p;
    }rb_type, *prb_type;
    rb_tree(T *A, int n) :root(NULL) {
        for (int i = 0; i < n; i++)
            this->rb_insert(A[i]);
    }
    ~rb_tree() {
        rb_empty(root);
    }
    void left_rotate(prb_type x);//左旋
    void right_rotate(prb_type x);//右旋
    void rb_insert(T key);//插入
    prb_type rb_max(prb_type x);
    prb_type rb_min(prb_type x);
    prb_type rb_search(T key);//查找
    prb_type rb_successor(T key);//后继
    prb_type rb_predecussor(T key);//前趋
    void rb_delete(T key);//删除
    void rb_delete(prb_type z);
    void rb_empty(prb_type x);//后续全部删除
    prb_type Root();
    void rb_show(prb_type x);//显示,仅测试使用
private:
    void rb_insert_fixup(prb_type z);//插入后修复
    void rb_delete_fixup(prb_type x);//删除后修复
    prb_type root;
};

相关成员函数的实现

left_rotate成员函数,实现某节点的左旋转

template <typename T>
void rb_tree<T>::left_rotate(typename rb_tree<T>::prb_type x) {
    prb_type y = x->right;//y非空
    x->right = y->left;
    if (y->left) y->left->p = x;//交换子节点
    y->p = x->p;//更新父节点
    if (x->p == NULL)//将y连接到x的父节点
        root = y;
    else {
        if (x == x->p->left)
            x->p->left = y;
        else
            x->p->right = y;
    }
    y->left = x;
    x->p = y;
}

right_rotate成员函数,实现某节点的右旋转

template <typename T>
void rb_tree<T>::right_rotate(typename rb_tree<T>::prb_type x) {
    prb_type y = x->left;
    x->left = y->right;
    if (y->right) y->right->p = x;
    y->p = x->p;
    if (x->p == NULL)
        root = y;
    else {
        if (x == x->p->left)
            x->p->left = y;
        else
            x->p->right = y;
    }
    y->right = x;
    x->p = y;
}

rb_insert成员函数,将某个key值插入到红黑树中,并修正让其满足红黑树的性质

template <typename T>
void rb_tree<T>::rb_insert(T key) {
    prb_type y = NULL, x = root, z = new rb_type(NULL, NULL, NULL, true, key);
    while (x != NULL) {
        y = x;
        if (key < x->key)
            x = x->left;
        else
            x = x->right;
    }
    z->p = y;
    if (y == NULL)
        root = z;
    else {
        if (key < y->key)
            y->left = z;
        else
            y->right = z;
    }
    rb_insert_fixup(z);
}

rb_insert_fixup成员函数,接上面,根据二叉树插入方法插入后,修正红黑树

template <typename T>
void rb_tree<T>::rb_insert_fixup(typename rb_tree<T>::prb_type x) {
    prb_type y;
    while (x->p && x->p->color) {//红色
        if (x->p == x->p->p->left) {//父节点存在,一定存在祖父节点
            y = x->p->p->right;
            //无法满足性质4
            if (!y || y->color) {//若y为NULL,默认不存在的节点是黑色
                x->p->color = false;
                if (y) y->color = false;
                x->p->p->color = true;
                x = x->p->p;//重新设置z节点
            }
            else if (x == x->p->right) { //无法满足性质5
                x = x->p;
                left_rotate(x);
            }
            if (x->p && x->p->p) {//保证存在
                x->p->color = false;
                x->p->p->color = true;
                right_rotate(x->p->p);
            }
        }
        else {//和上面左节点相反
            y = x->p->p->left;
            if (!y || y->color) {
                x->p->color = false;
                if (y) y->color = false;
                x->p->p->color = true;
                x = x->p->p;//重新设置z节点
            }
            else if (x == x->p->left) {
                x = x->p;
                right_rotate(x);
            }
            if (x->p && x->p->p) {
                x->p->color = false;
                x->p->p->color = true;
                left_rotate(x->p->p);
            }
        }
    }
    root->color = false;
}

rb_search成员函数,根据相关key值,找到对应的节点

template <typename T>
typename rb_tree<T>::prb_type rb_tree<T>::rb_search(T key) {
    prb_type x = root;
    while (x != NULL && key != x->key) {
        if (key < x->key)
            x = x->left;
        else
            x = x->right;
    }
    return x;
}

以下几个成员函数,是为了rb_delete函数作准备,分别是rb_max, rb_min, rb_successor, rb_predecessor

rb_max成员函数

template <typename T>
typename rb_tree<T>::prb_type rb_tree<T>::rb_max(typename rb_tree<T>::prb_type x) {
    if (x == NULL) return NULL;
    while (x->right) x = x->right;
    return x;
}

rb_min成员函数

template <typename T>
typename rb_tree<T>::prb_type rb_tree<T>::rb_min(typename rb_tree<T>::prb_type x) {
    if (x == NULL) return NULL;
    while (x->left) x = x->left;
    return x;
}

rb_successor成员函数

template <typename T>
typename rb_tree<T>::prb_type rb_tree<T>::rb_successor(T key) {
    prb_type x = rb_search(key), y;
    if (x == NULL) return NULL;
    if (x->right)
        return rb_min(x->right);
    y = x->p;
    while (y != NULL && y->right == x) {//没有则返回NULL
        x = y;
        y = y->p;
    }
    return y;
}

rb_predecessor成员函数

template <typename T>
typename rb_tree<T>::prb_type rb_tree<T>::rb_predecussor(T key) {
    prb_type x = rb_search(key), y;
    if (x == NULL) return NULL;
    if (x->left)
        return rb_max(x->left);
    y = x->p;
    while (y != NULL && y->left == x) {
        x = y;
        y = y->p;
    }
    return y;
}

最后,比较关键的删除函数rb_delete成员函数,实现了重载函数,是为了最后测试使用

rb_delete成员函数,重载一

template <typename T>
void rb_tree<T>::rb_delete(T key) {
    prb_type z = rb_search(key), y, x;
    if (z == NULL) return;
    if (z->left == NULL || z->right == NULL)//y是待删除的节点
        y = z;//z有一个子节点
    else
        y = rb_successor(key);//z有两个子节点,后继和前趋保证了y有一个或没有子节点
    if (y->left != NULL)
        x = y->left;
    else
        x = y->right;
    if (x != NULL) //存在一个子节点,先更正父子关系
        x->p = y->p;
    if (y->p == NULL)//再决定是在左或者右节点
        root = x;
    else {
        if (y->p->left == y)
            y->p->left = x;
        else
            y->p->right = x;
    }
    if (y != z)//处理两个子节点的交换
        z->key = y->key;
    if (!y->color)//黑色
        rb_delete_fixup(x);
    delete y;
}

重载二

template <typename T>
void rb_tree<T>::rb_delete(typename rb_tree<T>::prb_type z) {
    prb_type y, x;
    if (z == NULL) return;
    if (z->left == NULL || z->right == NULL)//y是待删除的节点
        y = z;//z有一个子节点
    else
        y = rb_successor(z->key);//z有两个子节点,后继和前趋保证了y有一个或没有子节点
    if (y->left != NULL)
        x = y->left;
    else
        x = y->right;
    if (x != NULL) //存在一个子节点,先更正父子关系
        x->p = y->p;
    if (y->p == NULL)//再决定是在左或者右节点
        root = x;
    else {
        if (y->p->left == y)
            y->p->left = x;
        else
            y->p->right = x;
    }
    if (y != z)//处理两个子节点的交换
        z->key = y->key;
    if (!y->color)//黑色
        rb_delete_fixup(x);
    delete y;
}

rb_delete_fixup成员函数,和插入类似,每一次删除一个节点,要调整红黑树颜色让其满足红黑树的性质(原理和rb_insert_fixup相似,不懂实现的,请认真学习《算法导论》)

template <typename T>
void rb_tree<T>::rb_delete_fixup(typename rb_tree<T>::prb_type x) {
    prb_type w;
    while (x && x!=root && !x->color) {//黑色
        if (x == x->p->left) {
            w = x->p->right;
            if (w->color) {//红色
                w->color = false;
                x->p->color = true;
                left_rotate(x->p);
                w = x->p->right;
            }
            if ((!w->left && !w->right)|| (!w->left->color && !w->right->color)) {//双黑
                w->color = true;
                x = x->p;
            }
            else {
                if (!w->right->color) {//单黑
                    w->left->color = false;
                    w->color = true;
                    right_rotate(w);
                    w = x->p->right;
                }
                w->color = x->p->color;
                x->p->color = false;
                w->right->color = false;
                left_rotate(x->p);
                x = root;
            }
        }
        else {//相反的情况
            w = x->p->left;
            if (w->color) {//红色
                w->color = false;
                x->p->color = true;
                right_rotate(x->p);
                w = x->p->left;
            }
            if ((!w->left && !w->right) || (!w->left->color && !w->right->color)) {//双黑
                w->color = true;
                x = x->p;
            }
            else {
                if (!w->left->color) {//单黑
                    w->right->color = false;
                    w->color = true;
                    left_rotate(w);
                    w = x->p->left;
                }
                w->color = x->p->color;
                x->p->color = false;
                w->left->color = false;
                right_rotate(x->p);
                x = root;
            }
        }
    }
    if (x) x->color = false;//巧妙处理,默认黑
}

rb_empty成员函数,按照后续的遍历删除所有的节点

template <typename T>
void rb_tree<T>::rb_empty(typename rb_tree<T>::prb_type x) {
    if (x != NULL) {
        rb_empty(x->left);
        rb_empty(x->right);
        rb_delete(x);//后续保证子叶为空
        rb_show(root);//测试使用
        printf("-------------------------------------
");
    }
}

为了测试所有函数是否正确,定义了一些辅助成员函数(可选)

Root成员函数

template <typename T>
typename rb_tree<T>::prb_type rb_tree<T>::Root() {
    return root;
}

rb_show成员函数

template <typename T>
void rb_tree<T>::rb_show(typename rb_tree<T>::prb_type x) {
    if (x != NULL) {
        rb_show(x->left);
        if (x == root)
            printf("root: (%s)%d
", root->color ? "red" : "black", root->key);
        else
            printf("(%s)%d
", x->color ? "red" : "black", x->key);
        rb_show(x->right);
    }
}

如果要分离模板实现,请提前实例化!!!!

template class rb_tree<int>;

最后的最后,上测试图吧!

测试一:

数据录入: 11 2 14 1 7 15 5 8 4

如果结果正确,应该生成《算法导论》中的图(如下,深色表示黑色,浅色表示红色)

代码产生的结果(正确):

测试二:

录入数据:13 8 17 1 11 15 25 6 22 27

如果结果正确,应该生成以下图的样子

代码产生的结果如下(正确):

测试三:

为了测试所有函数,那么以测试一中的数据为主,然后通过后续逐一删除,并且查看是否删除后,函数能正确的调整红黑树的颜色

未调用删除函数前,完整的红黑树是以下图

然后调用rb_empty成员函数后,产生一下结果(每次删除一个节点,都会显示树的状态和数据,大家花点时间,自己手动删一次,和下面结果一样)

所有代码均经过测试,结果正确!

原文地址:https://www.cnblogs.com/dalgleish/p/8994833.html