机器学习——梯度下降法

Notation:

m=number of training examples

n=number of features

x="input" variables / features

y="output"variable/"target" variable

((x^{(i)},y^{(i)})) = the ith trainging example

(h_ heta) = fitting function

一、梯度下降法(Gradient Descent)(主要)

其中(h_ heta(x)= heta_0+ heta_1x_1+...+ heta_nx_n=sum_{i=0}^{n}{ heta_ix_i}= heta^T)

假设损失函数为(J( heta)=frac{1}{2}sum_{i=1}^{m}{(h_ heta(x)-y)^2}) , To minimize the (J( heta))

main idea: Initalize ( heta) (may ( heta=vec{0})) ,then keep changing ( heta) to reduce (J( heta)) ,untill minimum

img

Gradient decent:

只有一个样本时,对第i个参数进行更新 ( heta_i:= heta_i-alphafrac{partial }{partial heta_i}J( heta)= heta_i-alpha(h_ heta(x)-y)x_i)

Repeat until convergence(收敛):

{

( heta_i:= heta_i-alphasum_{j=1}^{m}(h_ heta(x^{(j)})-y^{j})x_i^{(j)}) ,(for every i)

}

矩阵描述(简单):

Repeat until convergence(收敛):

{

( heta:= heta - abla_ heta J)

}

IF (Aepsilon R^{n*n})

​ tr(A)=(sum_{i=1}^nA_{ii}) :A的迹

(J( heta)=frac{1}{2}(X heta - vec{y})^T(X heta - vec{y}))

( abla_ heta J=frac{1}{2} abla_ heta ( heta^TX^TX heta- heta^TX^Ty-y^Tx heta+y^Ty) =X^TX heta-X^Ty)

备注

当目标函数是凸函数时,梯度下降法的解才是全局最优解

二、随机梯度下降(Stochastic Gradient Descent )

Repeat until convergence:

{

​ for j=1 to m{

( heta_i:= heta_i-alpha(h_ heta(x^{(j)})-y^{j})x_i^{(j)}) ,for every i

​ }

}

备注:

1.训练速度很快,每次仅仅采用一个样本来迭代;

2.解可能不是最优解,仅仅用一个样本决定梯度方向;

3.不能很快收敛,迭代方向变化很大。

三、mini-batch梯度下降

Repeat until convergence:

{

​ for j=1 to m/n{

( heta_i:= heta_i-alphasum_{j=1}^{n}(h_ heta(x^{(j)})-y^{j})x_i^{(j)}) ,for every i

​ }

}

备注:

机器学习中往往采用该算法

参考地址:

https://www.cnblogs.com/pinard/p/5970503.html

原文地址:https://www.cnblogs.com/daizigege/p/12213522.html