hystrix的源码分析(二)

hystrix的源码分析(二)

​ 上文回顾: 上文我们通过HystrixCommandAspect监听@HystrixCommand,然后通过@HystrixCommand的配置构建了一个GenericCommand这么的一个过程。

先看一下简洁版的HystrixCommandAspect:

@Aspect
public class HystrixCommandAspect {
	...
	
    @Around("hystrixCommandAnnotationPointcut() || hystrixCollapserAnnotationPointcut()")
    public Object methodsAnnotatedWithHystrixCommand(ProceedingJoinPoint joinPoint) throws Throwable {
		...
        HystrixInvokable invokable = HystrixCommandFactory.getInstance().create(metaHolder);
        ...
        result = CommandExecutor.execute(invokable, executionType, metaHolder);
        ...
    }
}

现在我们构建好了一个HystrixInvokable了。这篇博客主要讲的就是CommandExecutor.execute这个方法的执行过程

CommandExecutor.execute代码分析

CommandExecutor.execute执行如下:

public class CommandExecutor {
    public CommandExecutor() {
    }

    public static Object execute(HystrixInvokable invokable, ExecutionType executionType, MetaHolder metaHolder) throws RuntimeException {
        switch(executionType) {
        case SYNCHRONOUS:
            return castToExecutable(invokable, executionType).execute();
        case ASYNCHRONOUS:
          	...
        case OBSERVABLE:
			...
        default:
            throw new RuntimeException("unsupported execution type: " + executionType);
        }
    }

    private static HystrixExecutable castToExecutable(HystrixInvokable invokable, ExecutionType executionType) {
        if (invokable instanceof HystrixExecutable) {
            return (HystrixExecutable)invokable;
        } else {
            throw new RuntimeException("Command should implement " + HystrixExecutable.class.getCanonicalName() + " interface to execute in: " + executionType + " mode");
        }
    }
}
  public abstract class HystrixCommand<R> extends AbstractCommand<R> implements HystrixExecutable<R>, HystrixInvokableInfo<R>, HystrixObservable<R> {
      ...
  public R execute() {
        try {
            return queue().get();
        } catch (Exception e) {
            throw Exceptions.sneakyThrow(decomposeException(e));
        }
    }
      
   public Future<R> queue() {
        final Future<R> delegate = toObservable().toBlocking().toFuture();
   		...
   }
      ...
}

​ 首先CommandExecutor.execute 方法里要判断是需要同步,异步,观察这个三个模式下的哪一种,我们这里走的是同步。所以代码就会走HystrixCommand.execute() -> queue() -> toObservable()

toObservable代码分析

下面先看一下toObservable的代码:

  public Observable<R> toObservable() {
    .... 一些action的定义 ....
 final Func0<Observable<R>> applyHystrixSemantics = new Func0<Observable<R>>() {
        public Observable<R> call() {
                if(this.commandState.get()).equals(AbstractCommand.CommandState.UNSUBSCRIBED)){
                    return Observable.never() 
                }else{
                    applyHystrixSemantics(AbstractCommand.this);
                }
            }
        };
        
        ...
        return Observable.defer(new Func0<Observable<R>>() {
            public Observable<R> call() {
                ...判断是否开启缓存...
                boolean requestCacheEnabled = AbstractCommand.this.isRequestCachingEnabled();
                String cacheKey = AbstractCommand.this.getCacheKey();
                if (requestCacheEnabled) {
                    	//拿去缓存,如果存在缓存的话,直接返回
                         HystrixCommandResponseFromCache<R> fromCache = (HystrixCommandResponseFromCache<R>) requestCache.get(cacheKey);
                    if (fromCache != null) {
                        isResponseFromCache = true;
                        return handleRequestCacheHitAndEmitValues(fromCache, _cmd);
                    }
                }

                Observable<R> hystrixObservable = Observable.defer(applyHystrixSemantics).map(wrapWithAllOnNextHooks);
                Observable afterCache;
                if (requestCacheEnabled && cacheKey != null) {
                    ... 缓存后续的一些判断.....
                } else {
                    afterCache = hystrixObservable;
                }

                return 	afterCache.doOnTerminate(terminateCommandCleanup)
                    .doOnUnsubscribe(unsubscribeCommandCleanup)
                    .doOnCompleted(fireOnCompletedHook);

            }
        });
}

​ 首先toObservable()这个方法的返回值是Observable ,这个是rxjava的一个观察者,如果没看过rxjava的小伙伴建议去看一下先,不然hystrix后面代码会很难看懂,他是一层层的返回Observable。 我们这里直接查看返回值就行了,根据rxjava里Observable.defer(Func0<Observable>) 特性,是当Observable绑定了观察者的时候就会触发Func0里的call方法。这里我们先看看call里面的方法把。call里面的方法主要用途:

  • 判断一下是否开启了缓存,如果开启了就直接返回
  • 没有开启或者还没有缓存的时候就执行Observable.defer(applyHystrixSemantics),执行后返回。

​ 我们看到Observable.defer(applyHystrixSemantics), 也是Observable.defer这个方式,所以直接看call方法,代码接着会执行

applyHystrixSemantics(AbstractCommand.this);

代码如下:

    private Observable<R> applyHystrixSemantics(AbstractCommand<R> _cmd) {
        this.executionHook.onStart(_cmd);
        //判读是不是熔断了。
        if (this.circuitBreaker.allowRequest()) {
           final TryableSemaphore executionSemaphore = getExecutionSemaphore();

			。。。
            //信号量的控制
            if (executionSemaphore.tryAccaquire()) {
                try {
                    this.executionResult = this.executionResult.setInvocationStartTime(System.currentTimeMillis());
                   	//如果都成功的话会执行executeCommandAndObserve
                    return this.executeCommandAndObserve(_cmd)
                        .doOnError(markExceptionThrown)
                        .doOnTerminate(singleSemaphoreRelease)
                        .doOnUnsubscribe(singleSemaphoreRelease);
                } catch (RuntimeException var7) {
                    return Observable.error(var7);
                }
            } else {
                return this.handleSemaphoreRejectionViaFallback();
            }
        } else {
            return this.handleShortCircuitViaFallback();
        }
    }

​ 这里首先先判断this.circuitBreaker.allowRequest()是否熔断了,熔断了就执行this.handleSemaphoreRejectionViaFallback()方法直接返回,否则就继续执行下去。然后会获取TryableSemaphore,如果我们开启的时候信号量隔离的话这里就返回TryableSemaphore,否则就返回TryableSemaphoreNoOp。再去tryAccaquire尝试获取信号量,如果成功了最后执行this.executeCommandAndObserve(_cmd)方法。

熔断器降级分析

static class HystrixCircuitBreakerImpl implements HystrixCircuitBreaker {
        private final HystrixCommandProperties properties;
        private final HystrixCommandMetrics metrics;

    	//熔断器是否开启
        /* track whether this circuit is open/closed at any given point in time (default to false==closed) */
        private AtomicBoolean circuitOpen = new AtomicBoolean(false);

        /* when the circuit was marked open or was last allowed to try a 'singleTest' */
        private AtomicLong circuitOpenedOrLastTestedTime = new AtomicLong();

        protected HystrixCircuitBreakerImpl(HystrixCommandKey key, HystrixCommandGroupKey commandGroup, HystrixCommandProperties properties, HystrixCommandMetrics metrics) {
            this.properties = properties;
            this.metrics = metrics;
        }

    
    //当半开半闭状态下,如果这次请求成功而了,则把熔断器设为false,且让统计指标reset
        public void markSuccess() {
            if (circuitOpen.get()) {
                if (circuitOpen.compareAndSet(true, false)) {
                    //win the thread race to reset metrics
                    //Unsubscribe from the current stream to reset the health counts stream.  This only affects the health counts view,
                    //and all other metric consumers are unaffected by the reset
                    metrics.resetStream();
                }
            }
        }

        @Override
        public boolean allowRequest() {
            //判断是否强制打开熔断器
            if (properties.circuitBreakerForceOpen().get()) {
                return false;
            }
            //是否强制关闭熔断器
            if (properties.circuitBreakerForceClosed().get()) {
                isOpen();
                return true;
            }
            return !isOpen() || allowSingleTest();
        }

    
        public boolean allowSingleTest() {
            long timeCircuitOpenedOrWasLastTested = circuitOpenedOrLastTestedTime.get();
            // 1) if the circuit is open
            // 2) and it's been longer than 'sleepWindow' since we opened the circuit
            //熔断器是开启的,且当前时间比开启熔断器的时间加上sleepWindow时间还要长
            if (circuitOpen.get() && System.currentTimeMillis() > timeCircuitOpenedOrWasLastTested + properties.circuitBreakerSleepWindowInMilliseconds().get()) {
                // We push the 'circuitOpenedTime' ahead by 'sleepWindow' since we have allowed one request to try.
                // If it succeeds the circuit will be closed, otherwise another singleTest will be allowed at the end of the 'sleepWindow'.
                //设置当前时间到timeCircuitOpenedOrWasLastTested,
                //如果半开半闭的状态下,如果这次请求成功了则会调用markSuccess,让熔断器状态设为false,
                //如果不成功,就不需要了。
                //案例:半开半合状态下,熔断开启时间为00:00:00,sleepWindow为10s,如果00:00:15秒的时候调用,如果调用失败,
                //在00:00:15至00:00:25秒这个区间都是熔断的,
                if (circuitOpenedOrLastTestedTime.compareAndSet(timeCircuitOpenedOrWasLastTested, System.currentTimeMillis())) {
                    // if this returns true that means we set the time so we'll return true to allow the singleTest
                    // if it returned false it means another thread raced us and allowed the singleTest before we did
                    return true;
                }
            }
            return false;
        }

        @Override
        public boolean isOpen() {
            //判断是否熔断了,circuitOpen是熔断的状态 ,true为熔断,false为不熔断
            if (circuitOpen.get()) {
                return true;
            }

            //获取统计到的指标信息
            HealthCounts health = metrics.getHealthCounts();
		 	// 一个时间窗口(默认10s钟)总请求次数是否大于circuitBreakerRequestVolumeThreshold 默认为20s
            if (health.getTotalRequests() < properties.circuitBreakerRequestVolumeThreshold().get()) {
                return false;
            }
		    // 错误率(总错误次数/总请求次数)小于circuitBreakerErrorThresholdPercentage(默认50%)
            if (health.getErrorPercentage() < properties.circuitBreakerErrorThresholdPercentage().get()) {
                return false;
            } else {
                // 反之,熔断状态将从CLOSED变为OPEN,且circuitOpened==>当前时间戳
                if (circuitOpen.compareAndSet(false, true)) {
                    //并且把当前时间设置到circuitOpenedOrLastTestedTime,可待后面的时间的对比
                    circuitOpenedOrLastTestedTime.set(System.currentTimeMillis());
                    return true;
                } else {
                    return true;
                }
            }
        }

    }

​ HystrixCircuitBreakerImpl这个类就是在构建AbstractCommand的时候创建的。this.circuitBreaker.allowRequest() 这个方法做了以下几件事:

  1. 判断是否强制开启熔断器和强制关闭熔断器,如果不是调用返回!isOpen() || allowSingleTest();

  2. isOpen 首先判断熔断是否开启,然后判断是否需要熔断,熔断的条件如下:

    • 时间窗口内(默认10s钟)总请求次数大于20次
    • 时间窗口内(默认10s钟)失败率大于50%

    如果同时满足这两个条件则做以下操作:

    • 把熔断状态从false设为true
    • 把熔断时间设置为当前时间
  3. 如果是熔断的情况下就执行allowSingleTest,allowSingleTest的作用是:让开启熔断的都能往下执行,满足条件:

    • circuitOpen.get() 为true,确保是普通的熔断,而不是强制熔断
    • 当前时间比开启熔断器的时间加上sleepWindow时间还要长

    如果同时满足这个条件则让熔断开始时间设置为当前时间,且返回true(让程序执行走下去,而不是熔断了)。这里有个点是需要知道的,举个例子:熔断开启时间为00:00:00,sleepWindow为10s,如果00:00:15秒的时候调用,如果调用失败,在00:00:15至00:00:25秒这个区间都是熔断的。 半开半闭状态下如果这次请求为false的话,下次不会被熔断的时间可能就是这个时间加上睡眠时间了。

  4. 如果在半开半必的状态下,这次请求成功了,他回去调用markSuccess()方法,这个方法主要功能:

    • 把熔断器的状态从开启设为关闭
    • 让metrics统计指标重新统计

Tips:allowSingleTest返回true的简单的可以叫为半开半闭状态。

信号量隔离的分析

  /* package */static class TryableSemaphoreActual implements TryableSemaphore {
        protected final HystrixProperty<Integer> numberOfPermits;
        private final AtomicInteger count = new AtomicInteger(0);

        public TryableSemaphoreActual(HystrixProperty<Integer> numberOfPermits) {
            this.numberOfPermits = numberOfPermits;
        }

        @Override
        public boolean tryAcquire() {
            int currentCount = count.incrementAndGet();
            if (currentCount > numberOfPermits.get()) {
                count.decrementAndGet();
                return false;
            } else {
                return true;
            }
        }
    }
        
        
    /* package */static class TryableSemaphoreNoOp implements TryableSemaphore {

        public static final TryableSemaphore DEFAULT = new TryableSemaphoreNoOp();

        @Override
        public boolean tryAcquire() {
            return true;
        }
    }

executionSemaphore.tryAccaquire()的执行,主要他有两种情况

  • 开启了信号量隔离,TryableSemaphoreActual会把信号量增加1,如果currentCount > numberOfPermits.get()的时候就返回false,信号量降级。
  • 没有开启信号量隔离,TryableSemaphoreNoOp.tryAcquire()永远都是返回true。

executeCommandAndObserve方法解析

​ 如果没有被熔断隔离和信号量隔离的话,进入executeCommandAndObserve这个方法,代码如下:

    private Observable<R> executeCommandAndObserve(final AbstractCommand<R> _cmd) {
        final HystrixRequestContext currentRequestContext = HystrixRequestContext.getContextForCurrentThread();
        ....
        Observable<R> execution;
        //判断是否超时隔离
        if (properties.executionTimeoutEnabled().get()) {
            execution = executeCommandWithSpecifiedIsolation(_cmd)
                    .lift(new HystrixObservableTimeoutOperator<R>(_cmd));
        } else {
            execution = executeCommandWithSpecifiedIsolation(_cmd);
        }

        //markEmits,markOnCompleted,handleFallback,setRequestContext都是匿名内部类,都在这个方法里定义了,
        //这我觉得无关紧要就把他们复制进来。他们就是一些状态的设置
        return execution.doOnNext(markEmits)
                .doOnCompleted(markOnCompleted)
                .onErrorResumeNext(handleFallback)
                .doOnEach(setRequestContext);
    }

判断是否开启超时隔离:

  • 超时隔离executeCommandWithSpecifiedIsolation(_cmd).lift(new HystrixObservableTimeoutOperator(_cmd));
  • 不是超时隔离executeCommandWithSpecifiedIsolation(_cmd)

​ 其实是不是超时隔离都会执行executeCommandWithSpecifiedIsolation(_cmd),超时隔离额外加了一个Obserable.lift(new HystrixObservableTimeoutOperator(_cmd));

超时隔离分析

​ Obserable.lift可以认为是给这个Obserable加了一个装饰器,把传进来的参数进行加工,然后再传出到Obserable.onNext中,所以这里我们看HystrixObservableTimeoutOperator.call方法就行了。因为是call方法中进行加工的

​ HystrixObservableTimeoutOperator(_cmd)代码如下:

  private static class HystrixObservableTimeoutOperator<R> implements Operator<R, R> {

        final AbstractCommand<R> originalCommand;

        public HystrixObservableTimeoutOperator(final AbstractCommand<R> originalCommand) {
            this.originalCommand = originalCommand;
        }

        @Override
        public Subscriber<? super R> call(final Subscriber<? super R> child) {
            final CompositeSubscription s = new CompositeSubscription();
            // if the child unsubscribes we unsubscribe our parent as well
            child.add(s);
            //超时的时候抛出new HystrixTimeoutException()
            final HystrixContextRunnable timeoutRunnable = new HystrixContextRunnable(originalCommand.concurrencyStrategy, new Runnable() {
                @Override
                public void run() {
                    child.onError(new HystrixTimeoutException());
                }
            });

            //设置定时调度
            TimerListener listener = new TimerListener() {

                //定时触发的方法
                @Override
                public void tick() {
                    //把状态从未执行设为timeout
                    if (originalCommand.isCommandTimedOut.compareAndSet(TimedOutStatus.NOT_EXECUTED, TimedOutStatus.TIMED_OUT)) {
                        // report timeout failure
                        originalCommand.eventNotifier.markEvent(HystrixEventType.TIMEOUT, originalCommand.commandKey);
                        // shut down the original request
                        s.unsubscribe();
                        timeoutRunnable.run();
                    }
                }
                //获取定时的的时间
                @Override
                public int getIntervalTimeInMilliseconds() {
                    return originalCommand.properties.executionTimeoutInMilliseconds().get();
                }
            };

            final Reference<TimerListener> tl = HystrixTimer.getInstance().addTimerListener(listener);
            // set externally so execute/queue can see this
            originalCommand.timeoutTimer.set(tl);
            /**
             * If this subscriber receives values it means the parent succeeded/completed
             */
            Subscriber<R> parent = new Subscriber<R>() {
				...
            };

            // if s is unsubscribed we want to unsubscribe the parent
            s.add(parent);

            return parent;
        }

    }

HystrixTimer:

    public Reference<TimerListener> addTimerListener(final TimerListener listener) {
        startThreadIfNeeded();
        // add the listener

        Runnable r = new Runnable() {

            @Override
            public void run() {
                try {
                    listener.tick();
                } catch (Exception e) {
                    logger.error("Failed while ticking TimerListener", e);
                }
            }
        };
//getIntervalTimeInMilliseconds获取定时时间
        ScheduledFuture<?> f = executor.get().getThreadPool().scheduleAtFixedRate(r, listener.getIntervalTimeInMilliseconds(), listener.getIntervalTimeInMilliseconds(), TimeUnit.MILLISECONDS);
        return new TimerReference(listener, f);
    }

​ ObservableTimeoutOperator.call主要做了:定义了一个定时器TimerListener,里面定时的时间就是我们设置的@HystrixCommand的超时的时间(体现的位置:originalCommand.properties.executionTimeoutInMilliseconds().get()),然后当超时了,会执行以下操作:

  • 把状态从NOT_EXECUTED设置为TIMED_OUT
  • 发送TIMEOUT事件
  • s.unsubscribe()取消事件订阅
  • timeoutRunnable.run();抛出timeoutRunnable异常

​ 简单来说就是,设置了一个定时器,定时时间是我们设置的超时时间,如果定时时间到了,我们就改变相应的状态,发送相应的内部事件,取消Obserable的订阅,抛出异常,而做到一个超时的隔离。

executeCommandWithSpecifiedIsolation方法的执行

​ 代码如下:

private Observable<R> executeCommandWithSpecifiedIsolation(final AbstractCommand<R> _cmd) {
        if (properties.executionIsolationStrategy().get() == ExecutionIsolationStrategy.THREAD) {
            // mark that we are executing in a thread (even if we end up being rejected we still were a THREAD execution and not SEMAPHORE)
            return Observable.defer(new Func0<Observable<R>>() {
                @Override
                public Observable<R> call() {
                  	...
                    metrics.markCommandStart(commandKey, threadPoolKey, ExecutionIsolationStrategy.THREAD);

                    if (isCommandTimedOut.get() == TimedOutStatus.TIMED_OUT) {
              			...
                        return Observable.error(new RuntimeException("timed out before executing run()"));
                    }
                    if (threadState.compareAndSet(ThreadState.NOT_USING_THREAD, ThreadState.STARTED)) {
               				....
                        try {
                            executionHook.onThreadStart(_cmd);
                            executionHook.onRunStart(_cmd);
                            executionHook.onExecutionStart(_cmd);
                            //最后执行这个
                            return getUserExecutionObservable(_cmd);
                        } catch (Throwable ex) {
                            return Observable.error(ex);
                        }
                    } else {
                        //command has already been unsubscribed, so return immediately
                        return Observable.error(new RuntimeException("unsubscribed before executing run()"));
                    }
                }
            }).doOnTerminate(...).doOnUnsubscribe(...)
              .subscribeOn(threadPool.getScheduler(new Func0<Boolean>() {
                @Override
                public Boolean call() {
                    return properties.executionIsolationThreadInterruptOnTimeout().get() && _cmd.isCommandTimedOut.get() == TimedOutStatus.TIMED_OUT;
                }
            }));
        } else {
          ...
        }
    }

​ 这里返回的Obserable是Observable.defer(...).subscribeOn(...) , Observable.defer之前说过了。而且call方法中也没什么好分析的可以直接看到return getUserExecutionObservable(_cmd);这个方法了。

​ 而Observable.subscribeOn这个方法是用于指定一个线程池去执行我们被观察者observable触发时的方法,可以看到threadPool.getScheduler(...)。

指定线程池执行方法

​ 指定相应线程池的代码如下:

    /* package */static class HystrixThreadPoolDefault implements HystrixThreadPool {
        private static final Logger logger = LoggerFactory.getLogger(HystrixThreadPoolDefault.class);

        private final HystrixThreadPoolProperties properties;
        private final BlockingQueue<Runnable> queue;
        private final ThreadPoolExecutor threadPool;
        private final HystrixThreadPoolMetrics metrics;
        private final int queueSize;

		...
 

        @Override
        public Scheduler getScheduler(Func0<Boolean> shouldInterruptThread) {
            touchConfig();
            return new HystrixContextScheduler(HystrixPlugins.getInstance().getConcurrencyStrategy(), this, shouldInterruptThread);
        }

        //动态调整线程池的大小
        // allow us to change things via fast-properties by setting it each time
        private void touchConfig() {
            final int dynamicCoreSize = properties.coreSize().get();
            final int configuredMaximumSize = properties.maximumSize().get();
            int dynamicMaximumSize = properties.actualMaximumSize();
            final boolean allowSizesToDiverge = properties.getAllowMaximumSizeToDivergeFromCoreSize().get();
            boolean maxTooLow = false;

            if (allowSizesToDiverge && configuredMaximumSize < dynamicCoreSize) {
                dynamicMaximumSize = dynamicCoreSize;
                maxTooLow = true;
            }

            // In JDK 6, setCorePoolSize and setMaximumPoolSize will execute a lock operation. Avoid them if the pool size is not changed.
            if (threadPool.getCorePoolSize() != dynamicCoreSize || (allowSizesToDiverge && threadPool.getMaximumPoolSize() != dynamicMaximumSize)) {
          		...
                threadPool.setCorePoolSize(dynamicCoreSize);
                threadPool.setMaximumPoolSize(dynamicMaximumSize);
            }

            threadPool.setKeepAliveTime(properties.keepAliveTimeMinutes().get(), TimeUnit.MINUTES);
        }
}
public class HystrixContextScheduler extends Scheduler {

    private final HystrixConcurrencyStrategy concurrencyStrategy;
    private final Scheduler actualScheduler;
    private final HystrixThreadPool threadPool;
    
	。。。
  
    public HystrixContextScheduler(HystrixConcurrencyStrategy concurrencyStrategy, HystrixThreadPool threadPool, Func0<Boolean> shouldInterruptThread) {
        this.concurrencyStrategy = concurrencyStrategy;
        this.threadPool = threadPool;
        this.actualScheduler = new ThreadPoolScheduler(threadPool, shouldInterruptThread);
    }

    @Override
    public Worker createWorker() {
         	// 构建一个默认的Worker,这里的actualScheduler就是ThreadPoolScheduler
        //actualScheduler.createWorker()就是ThreadPoolWorker
        return new HystrixContextSchedulerWorker(actualScheduler.createWorker());
    }

    
    //HystrixContextSchedulerWorker类
    private class HystrixContextSchedulerWorker extends Worker {

        private final Worker worker;

        private HystrixContextSchedulerWorker(Worker actualWorker) {
            this.worker = actualWorker;
        }

   		...

        @Override
        public Subscription schedule(Action0 action) {
            if (threadPool != null) {
                if (!threadPool.isQueueSpaceAvailable()) {
                    throw new RejectedExecutionException("Rejected command because thread-pool queueSize is at rejection threshold.");
                }
            }
            //这里的worker其实就是ThreadPoolWorker
            return worker.schedule(new HystrixContexSchedulerAction(concurrencyStrategy, action));
        }

    }

    //ThreadPoolScheduler类
    private static class ThreadPoolScheduler extends Scheduler {

        private final HystrixThreadPool threadPool;
        private final Func0<Boolean> shouldInterruptThread;

        public ThreadPoolScheduler(HystrixThreadPool threadPool, Func0<Boolean> shouldInterruptThread) {
            this.threadPool = threadPool;
            this.shouldInterruptThread = shouldInterruptThread;
        }

        @Override
        public Worker createWorker() {
            //默认的worker为:ThreadPoolWorker
            return new ThreadPoolWorker(threadPool, shouldInterruptThread);
        }

    }

    
//ThreadPoolWorker类
    private static class ThreadPoolWorker extends Worker {

        private final HystrixThreadPool threadPool;
        private final CompositeSubscription subscription = new CompositeSubscription();
        private final Func0<Boolean> shouldInterruptThread;

        public ThreadPoolWorker(HystrixThreadPool threadPool, Func0<Boolean> shouldInterruptThread) {
            this.threadPool = threadPool;
            this.shouldInterruptThread = shouldInterruptThread;
        }
		...
        @Override
        public Subscription schedule(final Action0 action) {
            if (subscription.isUnsubscribed()) {
                // don't schedule, we are unsubscribed
                return Subscriptions.unsubscribed();
            }

            // This is internal RxJava API but it is too useful.
            ScheduledAction sa = new ScheduledAction(action);

            subscription.add(sa);
            sa.addParent(subscription);

            ThreadPoolExecutor executor = (ThreadPoolExecutor) threadPool.getExecutor();
            FutureTask<?> f = (FutureTask<?>) executor.submit(sa);
            sa.add(new FutureCompleterWithConfigurableInterrupt(f, shouldInterruptThread, executor));

            return sa;
        }

       ...
    }


}

touchConfig() 方法主要是重新设置最大线程池actualMaximumSize的,这里默认的allowMaximumSizeToDivergeFromCoreSize是false。和动态调整线程池的核心数大小

HystrixContextScheduler类中有HystrixContextSchedulerWorkerThreadPoolSchedulerThreadPoolWorker 这几个内部类。看看它们的作用:

  • HystrixContextSchedulerWorker: 对外提供schedule()方法,这里会判断线程池队列是否已经满,如果满了这会抛出异常:Rejected command because thread-pool queueSize is at rejection threshold。 如果配置的队列大小为-1 则默认返回true。然后继续调用actualScheduler.createWorker().schedule() , actualScheduler就是ThreadPoolScheduler。
  • ThreadPoolScheduler:执行createWorker()方法,默认使用ThreadPoolWorker()
  • ThreadPoolWorker: 执行command的核心逻辑
private static class ThreadPoolWorker extends Worker {

    private final HystrixThreadPool threadPool;
    private final CompositeSubscription subscription = new CompositeSubscription();
    private final Func0<Boolean> shouldInterruptThread;

    @Override
    public Subscription schedule(final Action0 action) {
        if (subscription.isUnsubscribed()) {
            return Subscriptions.unsubscribed();
        }

        ScheduledAction sa = new ScheduledAction(action);
        subscription.add(sa);
        sa.addParent(subscription);
        // 获取线程池
        ThreadPoolExecutor executor = (ThreadPoolExecutor) threadPool.getExecutor();
        // 将包装后的HystrixCommand submit到线程池,然后返回FutureTask
        FutureTask<?> f = (FutureTask<?>) executor.submit(sa);
        sa.add(new FutureCompleterWithConfigurableInterrupt(f, shouldInterruptThread, executor));

        return sa;
    }
}

​ 这里我们可以看到了,获取线程池,并且将包装后的HystrixCommand submit到线程池,然后返回FutureTask。

getUserExecutionObservable方法执行

    private Observable<R> getUserExecutionObservable(final AbstractCommand<R> _cmd) {
        Observable<R> userObservable;

        try {
            userObservable = getExecutionObservable();
        } catch (Throwable ex) {
            // the run() method is a user provided implementation so can throw instead of using Observable.onError
            // so we catch it here and turn it into Observable.error
            userObservable = Observable.error(ex);
        }

        return userObservable
                .lift(new ExecutionHookApplication(_cmd))
                .lift(new DeprecatedOnRunHookApplication(_cmd));
    }

HystrixCommand类中的

   @Override
    final protected Observable<R> getExecutionObservable() {
        return Observable.defer(new Func0<Observable<R>>() {
            @Override
            public Observable<R> call() {
                try {
                    //可以看到run()方法了。 HystrixCommand.run()其实就是我们自己写的代码里的方法
                    return Observable.just(run());
                } catch (Throwable ex) {
                    return Observable.error(ex);
                }
            }
        }).doOnSubscribe(new Action0() {
            @Override
            public void call() {
                // Save thread on which we get subscribed so that we can interrupt it later if needed
                executionThread.set(Thread.currentThread());
            }
        });
    }

最后可以看到会调用Observable.just(run()) ,这个就是我们我们自己写的代码里的方法,到这里就是我们整体的执行过程了。

额外补充

​ 为什么我们没有看到Observable.subscribe去订阅观察者呢。其实在HystrixCommand.queue()的方法中有这么一个代码:toObservable().toBlocking().toFuture()。跟踪一下代码:toObservable().toBlocking() -> BlockingObservable.from(this) -> new BlockingObservable(o) 得到的是BlockingObservable ,然后BlockingObservable.toFuture -> BlockingOperatorToFuture.toFuture(this.o) 看下 BlockingOperatorToFuture.toFuture代码:

 public static <T> Future<T> toFuture(Observable<? extends T> that) {
        final CountDownLatch finished = new CountDownLatch(1);
        final AtomicReference<T> value = new AtomicReference();
        final AtomicReference<Throwable> error = new AtomicReference();
     	//observable.subscribe 订阅的位置
        final Subscription s = that.single().subscribe(new Subscriber<T>() {
            public void onCompleted() {
                finished.countDown();
            }

            public void onError(Throwable e) {
                error.compareAndSet((Object)null, e);
                finished.countDown();
            }

            public void onNext(T v) {
                value.set(v);
            }
        });
        return new Future<T>() {
            ...
        };
    }

final Subscription s = that.single().subscribe(...) 这里就是订阅的位置了。

结尾

​ 总结: 这篇博文主要是讲了HystrixCommand.execute整个的执行的流程,里面已经涵盖了熔断,超时,信号量,线程的代码了。最后附上一张我自己画的一张流程图,如果想自己走一遍流程的话可以看一下我这个流程图:

hstrix执行流程图

高清流程图:

https://gitee.com/gzgyc/blogimage/raw/master/hstrix执行流程图.jpg

原文地址:https://www.cnblogs.com/dabenxiang/p/13764179.html