经典算法-回顾(前十)

关于 曾经的48种经典算法与23种常用设计模式相信都不陌生了,不过好久没看了而且当时看的时候也没有整理出来,现在就慢慢整理出来(后续会慢慢更新,这里只是对经典算法进行整理):

目录:

1.河内之塔_TowersOfHanoi
2.费氏数列_Fibonacci
3.巴斯卡三角形
4.三色棋
5.老鼠走迷官1
6.老鼠走迷官2
7.骑士走棋盘_KnightTour
8.八皇后
9.八枚银币
10.生命游戏

先来看看基本说明和解法:

1.河内之塔_TowersOfHanoi

说明
河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越战时
北越的首都,即现在的胡志明市;1883年法国数学家Edouard Lucas曾提及这个故事,据说创世
纪时Benares有一座波罗教塔,是由三支钻石棒(Pag)所支撑,开始时神在第一根棒上放置64
个由上至下依由小至大排列的金盘(Disc),并命令僧侣将所有的金盘从第一根石棒移至第三根
石棒,且搬运过程中遵守大盘子在小盘子之下的原则,若每日仅搬一个盘子,则当盘子全数搬
运完毕之时,此塔将毁损,而也就是世界末日来临之时。

解法
如果柱子标为ABC,要由A搬至C,在只有一个盘子时,就将它直接搬至C,当有两个盘
子,就将B当作辅助柱。如果盘数超过2个,将第三个以下的盘子遮起来,就很简单了,每次处
理两个盘子,也就是:A->B、A ->C、B->C这三个步骤,而被遮住的部份,其实就是进入程式
的递回处理。事实上,若有n个盘子,则移动完毕所需之次数为2^n - 1,所以当盘数为64时,则
所需次数为:264- 1 = 18446744073709551615为5.05390248594782e+16年,也就是约5000世纪,
如果对这数字没什幺概念,就假设每秒钟搬一个盘子好了,也要约5850亿年左右。

2.费氏数列_Fibonacci

说明
Fibonacci为1200年代的欧洲数学家,在他的着作中曾经提到:「若有一只免子每个月生一只小免
子,一个月后小免子也开始生产。起初只有一只免子,一个月后就有两只免子,二个月后有三
只免子,三个月后有五只免子(小免子投入生产)......。
如果不太理解这个例子的话,举个图就知道了,注意新生的小免子需一个月成长期才会投入生
产,类似的道理也可以用于植物的生长,这就是Fibonacci数列,一般习惯称之为费氏数列,例
如以下: 1、1 、2、3、5、8、13、21、34、55、89......
解法
依说明,我们可以将费氏数列定义为以下:
* fn=fn-1+fn-2 if n>1
* fn=n if n=0,1

3.巴斯卡三角形

4.三色棋(也就是一般人常说的冒泡排序,三色旗可以说是排序祖师爷了)

说明
三色旗的问题最早由E.W.Dijkstra所提出,他所使用的用语为Dutch Nation Flag(Dijkstra为荷兰
人),而多数的作者则使用Three-Color Flag来称之。
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,您
希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳子上
进行这个动作,而且一次只能调换两个旗子。
*
解法
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来作辅助,问
题的解法很简单,您可以自己想像一下在移动旗子,从绳子开头进行,遇到蓝色往前移,遇到
白色留在中间,遇到红色往后移,如下所示:
只是要让移动次数最少的话,就要有些技巧:
如果图中W所在的位置为白色,则W+1,表示未处理的部份移至至白色群组。
如果W部份为蓝色,则B与W的元素对调,而B与W必须各+1,表示两个群组都多了一个元素。
如果W所在的位置是红色,则将W与R交换,但R要减1,表示未处理的部份减1。
注意B、W、R并不是三色旗的个数,它们只是一个移动的指标;什幺时候移动结束呢?一开始
时未处理的R指标会是等于旗子的总数,当R的索引数减至少于W的索引数时,表示接下来的旗
子就都是红色了,此时就可以结束移动。

5.老鼠走迷官1

* 说明
* 老鼠走迷宫是递回求解的基本题型,我们在二维阵列中使用2表示迷宫墙壁,使用1来表示老鼠的行走路径,试以程式求出由入口至出口的路径。
*
* 解法
* 老鼠的走法有上、左、下、右四个方向,在每前进一格之后就选一个方向前进,无法前进时退回选择下一个可前进方向,如此在阵列中依序测
* 试四个方向,直到走到出口为止,这是递回的基本题,请直接看程式应就可以理解。

6.老鼠走迷官2

* 说明
* 由于迷宫的设计,老鼠走迷宫的入口至出口路径可能不只一条,如何求出所有的路径呢?
* 解法
* 求所有路径看起来复杂但其实更简单,只要在老鼠走至出口时显示经过的路径,然后退回上一格重新选择下一个位置继续递回就可以了,
* 比求出单一路径还简单,我们的程式只要作一点修改就可以了。

7.骑士走棋盘_KnightTour

说明
* 骑士旅游(Knight tour)在十八世纪初倍受数学家与拼图迷的注意,它什么时候被提出
已不可考,骑士的走法为西洋棋的走法,骑士可以由任一个位置出发,它要如何走完[所有的位
置?

解法
* 骑士的走法,基本上可以使用递回来解决,但是纯綷的递回在维度大时相当没有效率,
一个聪明的解法由J.C. Warnsdorff在1823年提出,简单的说,先将最难的位置走完,接下来的路
就宽广了,骑士所要走的下一步,「为下一步再选择时,所能走的步数最少的一步。」,使用这个
方法,在不使用递回的情况下,可以有较高的机率找出走法(找不到走法的机会也是有的)。

8.八皇后

* 说明
* 西洋棋中的皇后可以直线前进,吃掉遇到的所有棋子,如果棋盘上有八个皇后,则这八个皇后如何相安无事的放置在棋盘上,1970年与1971年, E.W.Dijkstra与N.Wirth曾经用这个问题来讲解程式设计之技巧。
*
* 解法
* 关于棋盘的问题,都可以用递回求解,然而如何减少递回的次数?在八个皇后的问题中,不必要所有的格子都检查过,例如若某列检查过,该该列的其它格子就不用再检查了,这个方法称为分支修剪。
*

9.八枚银币

* 说明
* 现有八枚银币a b c d e f g h,已知其中一枚是假币,其重量不同于真币,但不知是较轻或较重,如何使用天平以最少的比较次数,决定出哪枚是假币,并得知假币比真币较轻或较重。
*
* 解法
* 单就求假币的问题是不难,但问题限制使用最少的比较次数,所以我们不能以单纯的回圈比较来求解,我们可以使用决策树(decision tree),使用分析与树状图来协助求解。一个简单
的状况是这样的,我们比较a+b+c与d+e+f ,如果相等,则假币必是g或h,我们先比较g或h哪个较重,如果g较重,再与a比较(a是真币),如果g等于a,则g为真币,则h为假币,由于h比g轻
而g是真币,则h假币的重量比真币轻。

10.生命游戏

* 说明
* 生命游戏(game of life)为1970年由英国数学家J. H. Conway所提出,某一细胞的邻居包括上、下、左、右、左上、左下、右上与右下相邻之细胞,游戏规则如下:
孤单死亡:如果细胞的邻居小于一个,则该细胞在下一次状态将死亡。
拥挤死亡:如果细胞的邻居在四个以上,则该细胞在下一次状态将死亡。
稳定:如果细胞的邻居为二个或三个,则下一次状态为稳定存活。
复活:如果某位置原无细胞存活,而该位置的邻居为三个,则该位置将复活一细胞。
* 解法
* 生命游戏的规则可简化为以下,并使用CASE比对即可使用程式实作:
邻居个数为0、1、4、5、6、7、8时,则该细胞下次状态为死亡。
邻居个数为2时,则该细胞下次状态为复活。
邻居个数为3时,则该细胞下次状态为稳定。

  

代码下载

原文地址:https://www.cnblogs.com/cyr2012/p/4308986.html