神经网络和深度学习-week4编程题(1&2一步步搭建多层神经网络及应用)

深度神经网络计算过程

提前加载包

1 import numpy as np
2 import h5py
3 import matplotlib.pyplot as plt
4 from testCases_v2 import *
5 from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward
6 from scipy import ndimage
7 import lr_utils

初始化模型参数

两层结构:

 1 def initialize_parameters(n_x, n_h, n_y):
 2     """
 3     Argument:
 4     n_x -- size of the input layer
 5     n_h -- size of the hidden layer
 6     n_y -- size of the output layer
 7     
 8     Returns:
 9     parameters -- python dictionary containing your parameters:
10                     W1 -- weight matrix of shape (n_h, n_x)
11                     b1 -- bias vector of shape (n_h, 1)
12                     W2 -- weight matrix of shape (n_y, n_h)
13                     b2 -- bias vector of shape (n_y, 1)
14     """   
15     np.random.seed(1)
16     
17     ### START CODE HERE ### (≈ 4 lines of code)
18     W1=np.random.randn(n_h,n_x)*0.01
19     W2=np.random.randn(n_y,n_h)*0.01
20     b1=np.zeros((n_h,1))
21     b2=np.zeros((n_y,1))
22     ### END CODE HERE ###
23     
24     assert(W1.shape == (n_h, n_x))
25     assert(b1.shape == (n_h, 1))
26     assert(W2.shape == (n_y, n_h))
27     assert(b2.shape == (n_y, 1))
28     
29     parameters = {"W1": W1,
30                   "b1": b1,
31                   "W2": W2,
32                   "b2": b2}
33     
34     return parameters  

L层结构:

 1 def initialize_parameters_deep(layer_dims):
 2     """
 3     Arguments:
 4     layer_dims -- python array (list) containing the dimensions of each layer in our network
 5     
 6     Returns:
 7     parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
 8                     Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
 9                     bl -- bias vector of shape (layer_dims[l], 1)
10     """
11     np.random.seed(3)
12     parameters = {}
13     L = len(layer_dims)            # number of layers in the network
14 
15     for l in range(1, L):
16         ### START CODE HERE ### (≈ 2 lines of code)
17         parameters['W' + str(l)]=np.random.randn(layer_dims[l],layer_dims[l-1])/np.sqrt(layers_dims[l - 1])
18         parameters['b' + str(l)]=np.zeros((layer_dims[l],1))
19         ### END CODE HERE ###
20         
21         assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l - 1]))
22         assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))        
23     return parameters

Forward propagation 前向传播

线性部分:

 1 def linear_forward(A, W, b):
 2     """
 3     Implement the linear part of a layer's forward propagation.
 4 
 5     Arguments:
 6     A -- activations from previous layer (or input data): (size of previous layer, number of examples)
 7     W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
 8     b -- bias vector, numpy array of shape (size of the current layer, 1)
 9 
10     Returns:
11     Z -- the input of the activation function, also called pre-activation parameter 
12     cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently
13     """ 
14     ### START CODE HERE ### (≈ 1 line of code)
15     Z=np.dot(W,A)+b
16     ### END CODE HERE ###
17     
18     assert(Z.shape == (W.shape[0], A.shape[1]))
19     cache = (A, W, b)
20     return Z, cache

线性激活部分:

 1 def linear_activation_forward(A_prev, W, b, activation):
 2     """
 3     Implement the forward propagation for the LINEAR->ACTIVATION layer
 4 
 5     Arguments:
 6     A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
 7     W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
 8     b -- bias vector, numpy array of shape (size of the current layer, 1)
 9     activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
10 
11     Returns:
12     A -- the output of the activation function, also called the post-activation value 
13     cache -- a python dictionary containing "linear_cache" and "activation_cache";
14              stored for computing the backward pass efficiently
15     """
16     
17     if activation == "sigmoid":
18         # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
19         ### START CODE HERE ### (≈ 2 lines of code)
20         Z,linear_cache=linear_forward(A_prev, W, b)
21         A,activation_cache=sigmoid(Z)
22         ### END CODE HERE ###
23     
24     elif activation == "relu":
25         # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
26         ### START CODE HERE ### (≈ 2 lines of code)
27         Z,linear_cache=linear_forward(A_prev, W, b)
28         A,activation_cache=relu(Z)
29         ### END CODE HERE ###
30     
31     assert (A.shape == (W.shape[0], A_prev.shape[1]))
32     cache = (linear_cache, activation_cache)
33 
34     return A, cache

多层模型前向传播:

 1 def L_model_forward(X, parameters):
 2     """
 3     Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation
 4     
 5     Arguments:
 6     X -- data, numpy array of shape (input size, number of examples)
 7     parameters -- output of initialize_parameters_deep()
 8     
 9     Returns:
10     AL -- last post-activation value
11     caches -- list of caches containing:
12                 every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2)
13                 the cache of linear_sigmoid_forward() (there is one, indexed L-1)
14     """
15     caches = []
16     A = X
17     L = len(parameters) // 2                  # number of layers in the neural network
18     
19     # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
20     for l in range(1, L):
21         A_prev = A 
22         ### START CODE HERE ### (≈ 2 lines of code)
23         A,cache=linear_activation_forward(A_prev, parameters['W'+str(l)], parameters['b'+str(l)], "relu")
24         caches.append(cache)
25         ### END CODE HERE ###
26     
27     # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
28     ### START CODE HERE ### (≈ 2 lines of code)
29     AL,cache=linear_activation_forward(A, parameters['W'+str(L)], parameters['b'+str(L)], 'sigmoid')
30     caches.append(cache)
31     ### END CODE HERE ###
32     
33     assert(AL.shape == (1, X.shape[1]))
34             
35     return AL, caches

计算损失

 1 def compute_cost(AL, Y):
 2     """
 3     Implement the cost function defined by equation (7).
 4 
 5     Arguments:
 6     AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
 7     Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)
 8 
 9     Returns:
10     cost -- cross-entropy cost
11     """
12     m = Y.shape[1]
13 
14     # Compute loss from aL and y.
15     ### START CODE HERE ### (≈ 1 lines of code)
16     cost =-np.sum(np.multiply(np.log(AL),Y) + np.multiply(np.log(1 - AL), 1 - Y)) / m    
17     ### END CODE HERE ###
18     
19     cost = np.squeeze(cost)      # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
20     assert(cost.shape == ())
21     return cost

Backward propagation反向传播

线性部分:

 1 def linear_backward(dZ, cache):
 2     """
 3     Implement the linear portion of backward propagation for a single layer (layer l)
 4 
 5     Arguments:
 6     dZ -- Gradient of the cost with respect to the linear output (of current layer l)
 7     cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer
 8 
 9     Returns:
10     dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
11     dW -- Gradient of the cost with respect to W (current layer l), same shape as W
12     db -- Gradient of the cost with respect to b (current layer l), same shape as b
13     """
14     A_prev, W, b = cache
15     m = A_prev.shape[1]
16 
17     ### START CODE HERE ### (≈ 3 lines of code)
18     dW=np.dot(dZ,A_prev.T)/m
19     db=np.sum(dZ, axis=1, keepdims=True)/m
20     dA_prev=np.dot(W.T, dZ)
21     ### END CODE HERE ###
22     
23     assert (dA_prev.shape == A_prev.shape)
24     assert (dW.shape == W.shape)
25     assert (db.shape == b.shape)
26     
27     return dA_prev, dW, db

线性激活部分:

 1 def linear_activation_backward(dA, cache, activation):
 2     """
 3     Implement the backward propagation for the LINEAR->ACTIVATION layer.
 4     
 5     Arguments:
 6     dA -- post-activation gradient for current layer l 
 7     cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
 8     activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
 9     
10     Returns:
11     dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
12     dW -- Gradient of the cost with respect to W (current layer l), same shape as W
13     db -- Gradient of the cost with respect to b (current layer l), same shape as b
14     """
15     linear_cache, activation_cache = cache
16     
17     if activation == "relu":
18         ### START CODE HERE ### (≈ 2 lines of code)
19         dZ=relu_backward(dA, activation_cache)
20         dA_prev,dW,db=linear_backward(dZ,linear_cache)
21         ### END CODE HERE ###
22         
23     elif activation == "sigmoid":
24         ### START CODE HERE ### (≈ 2 lines of code)
25         dZ=sigmoid_backward(dA, activation_cache)
26         dA_prev,dW,db=linear_backward(dZ,linear_cache)
27         ### END CODE HERE ###
28     
29     dA_prev, dW, db = linear_backward(dZ, linear_cache)  
30     return dA_prev, dW, db

多层模型向后传播函数:

 1 def L_model_backward(AL, Y, caches):
 2     """
 3     Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group
 4     
 5     Arguments:
 6     AL -- probability vector, output of the forward propagation (L_model_forward())
 7     Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
 8     caches -- list of caches containing:
 9                 every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)
10                 the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])
11     
12     Returns:
13     grads -- A dictionary with the gradients
14              grads["dA" + str(l)] = ... 
15              grads["dW" + str(l)] = ...
16              grads["db" + str(l)] = ... 
17     """
18     grads = {}
19     L = len(caches)         # the number of layers
20     m = AL.shape[1]
21     Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
22     
23     # Initializing the backpropagation
24     ### START CODE HERE ### (1 line of code)
25     dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
26     current_cache = caches[L-1]
27     ### END CODE HERE ###
28     
29     # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
30     ### START CODE HERE ### (approx. 2 lines)
31     grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid")                   
32     ### END CODE HERE ###
33     
34     for l in reversed(range(L-1)):
35         # lth layer: (RELU -> LINEAR) gradients.
36         # Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] 
37         ### START CODE HERE ### (approx. 5 lines)
38         current_cache = caches[l]
39         dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 1)], current_cache, "relu") 
40         grads["dA" + str(l)] = dA_prev_temp  
41         grads["dW" + str(l + 1)] = dW_temp
42         grads["db" + str(l + 1)] = db_temp
43         ### END CODE HERE ###
44 
45     return grads

更新参数

 1 def update_parameters(parameters, grads, learning_rate):
 2     """
 3     Update parameters using gradient descent
 4     
 5     Arguments:
 6     parameters -- python dictionary containing your parameters 
 7     grads -- python dictionary containing your gradients, output of L_model_backward
 8     
 9     Returns:
10     parameters -- python dictionary containing your updated parameters 
11                   parameters["W" + str(l)] = ... 
12                   parameters["b" + str(l)] = ...
13     """   
14     L = len(parameters) // 2 # number of layers in the neural network
15 
16     # Update rule for each parameter. Use a for loop.
17     ### START CODE HERE ### (≈ 3 lines of code)
18     for l in range(L):
19         parameters["W" + str(l+1)] = parameters["W" + str(l+1)]-learning_rate*grads['dW'+str(l+1)]
20         parameters["b" + str(l+1)] = parameters["b" + str(l+1)]-learning_rate*grads['db'+str(l+1)]  
21     ### END CODE HERE ###
22         
23     return parameters

搭建两层神经网络

 1 def two_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=3000, print_cost=False):
 2     """
 3     Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID.
 4     
 5     Arguments:
 6     X -- input data, of shape (n_x, number of examples)
 7     Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
 8     layers_dims -- dimensions of the layers (n_x, n_h, n_y)
 9     num_iterations -- number of iterations of the optimization loop
10     learning_rate -- learning rate of the gradient descent update rule
11     print_cost -- If set to True, this will print the cost every 100 iterations 
12     
13     Returns:
14     parameters -- a dictionary containing W1, W2, b1, and b2
15     """    
16     np.random.seed(1)
17     grads = {}
18     costs = []                              # to keep track of the cost
19     m = X.shape[1]                           # number of examples
20     (n_x, n_h, n_y) = layers_dims
21     
22     # Initialize parameters dictionary, by calling one of the functions you'd previously implemented
23     ### START CODE HERE ### (≈ 1 line of code)
24     parameters=initialize_parameters(n_x, n_h, n_y)
25     ### END CODE HERE ###
26     
27     # Get W1, b1, W2 and b2 from the dictionary parameters.
28     W1 = parameters["W1"]
29     b1 = parameters["b1"]
30     W2 = parameters["W2"]
31     b2 = parameters["b2"]
32     
33     # Loop (gradient descent)
34     for i in range(0, num_iterations):
35 
36         # Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1". Output: "A1, cache1, A2, cache2".
37         ### START CODE HERE ### (≈ 2 lines of code)
38         A1,cache1=linear_activation_forward(X, W1, b1, 'relu')
39         A2,cache2=linear_activation_forward(A1, W2, b2, 'sigmoid')
40         ### END CODE HERE ###
41         
42         # Compute cost
43         ### START CODE HERE ### (≈ 1 line of code)
44         cost=compute_cost(A2, Y)        
45         ### END CODE HERE ###
46         
47         # Initializing backward propagation
48         dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
49         
50         # Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1".
51         ### START CODE HERE ### (≈ 2 lines of code)
52         dA1,dW2,db2=linear_activation_backward(dA2, cache2, 'sigmoid')
53         dA0,dW1,db1=linear_activation_backward(dA1, cache1, 'relu')
54         ### END CODE HERE ###
55         
56         # Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2
57         grads['dW1'] = dW1
58         grads['db1'] = db1
59         grads['dW2'] = dW2
60         grads['db2'] = db2
61         
62         # Update parameters.
63         ### START CODE HERE ### (approx. 1 line of code)
64         parameters=update_parameters(parameters, grads, learning_rate) 
65         ### END CODE HERE ###
66 
67         # Retrieve W1, b1, W2, b2 from parameters
68         W1 = parameters["W1"]
69         b1 = parameters["b1"]
70         W2 = parameters["W2"]
71         b2 = parameters["b2"]
72         
73         # Print the cost every 100 training example
74         if print_cost and i % 100 == 0:
75             print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
76             costs.append(cost)
77        
78     # plot the cost
79     plt.plot(np.squeeze(costs))
80     plt.ylabel('cost')
81     plt.xlabel('iterations (per tens)')
82     plt.title("Learning rate =" + str(learning_rate))
83     plt.show()    
84     return parameters

搭建多层神经网络

 1 def L_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=3000, print_cost=False): #lr was 0.009
 2     """
 3     Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID.
 4     
 5     Arguments:
 6     X -- data, numpy array of shape (number of examples, num_px * num_px * 3)
 7     Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
 8     layers_dims -- list containing the input size and each layer size, of length (number of layers + 1).
 9     learning_rate -- learning rate of the gradient descent update rule
10     num_iterations -- number of iterations of the optimization loop
11     print_cost -- if True, it prints the cost every 100 steps
12     
13     Returns:
14     parameters -- parameters learnt by the model. They can then be used to predict.
15     """
16     np.random.seed(1)
17     costs = []                         # keep track of cost
18     
19     # Parameters initialization.
20     ### START CODE HERE ###
21     parameters=initialize_parameters_deep(layers_dims)    
22     ### END CODE HERE ###
23     
24     # Loop (gradient descent)
25     for i in range(0, num_iterations):
26 
27         # Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID.
28         ### START CODE HERE ### (≈ 1 line of code)
29         AL,caches=L_model_forward(X, parameters)
30         ### END CODE HERE ###
31         
32         # Compute cost.
33         ### START CODE HERE ### (≈ 1 line of code)
34         cost=compute_cost(AL, Y)
35         ### END CODE HERE ###
36     
37         # Backward propagation.
38         ### START CODE HERE ### (≈ 1 line of code)
39         grads=L_model_backward(AL, Y, caches)     
40         ### END CODE HERE ###
41  
42         # Update parameters.
43         ### START CODE HERE ### (≈ 1 line of code)
44         parameters=update_parameters(parameters, grads, learning_rate)        
45         ### END CODE HERE ###
46                 
47         # Print the cost every 100 training example
48         if print_cost and i % 100 == 0:
49             print ("Cost after iteration %i: %f" % (i, cost))
50             costs.append(cost)
51             
52     # plot the cost
53     plt.plot(np.squeeze(costs))
54     plt.ylabel('cost')
55     plt.xlabel('iterations (per tens)')
56     plt.title("Learning rate =" + str(learning_rate))
57     plt.show()
58     
59     return parameters

预测

 1 def predict(X, y, parameters):
 2     """
 3     该函数用于预测L层神经网络的结果,当然也包含两层   
 4     参数:
 5      X - 测试集
 6      y - 标签
 7      parameters - 训练模型的参数
 8     返回:
 9      p - 给定数据集X的预测
10     """
11     m = X.shape[1]
12     n = len(parameters) // 2 # 神经网络的层数
13     p = np.zeros((1,m))
14     
15     #根据参数前向传播
16     probas, caches = L_model_forward(X, parameters)
17     
18     for i in range(0, probas.shape[1]):       
19         p[0,i] = 1 if probas[0,i] > 0.5 else 0
20     
21     print("准确度为: "  + str(float(np.sum((p == y))/m)))     
22     return p

对搭建的神经网络进行预测:

 1 #准备数据
 2 train_x_orig, train_y, test_x_orig, test_y, classes = load_data()
 3 
 4 # Reshape the training and test examples 
 5 train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T   # The "-1" makes reshape flatten the remaining dimensions
 6 test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T
 7 
 8 # Standardize data to have feature values between 0 and 1.
 9 train_x = train_x_flatten / 255
10 test_x = test_x_flatten / 255
1 #对两层神经网络进行预测
2 parameters1 = two_layer_model(train_x, train_y, layers_dims = (12288, 7, 1), num_iterations = 2500, print_cost=True)
3 pred_test1=predict(test_x, test_y, parameters1)
4 
5 #对多层神经网络进行预测
6 parameters2 = L_layer_model(train_x, train_y, layers_dims=(12288,20,7,5,1), num_iterations=250, print_cost=True)
7 pred_test2=predict(test_x, test_y, parameters2)

 

两层神经网络,精确率72%

多层神经网络,精确率78%

原文地址:https://www.cnblogs.com/cxq1126/p/13080648.html