tensorflow2.0——数据预处理

import tensorflow as tf
from tensorflow.keras import optimizers,layers
# 定义数据预处理函数
def preprocess(x,y):
    x = tf.cast(x,dtype=tf.float32) / 255                   #   将特征数据转化为float32类型,并缩放到0到1之间
    y = tf.cast(y,dtype=tf.int32)                           #   将标记数据转化为int32类型
    y = tf.one_hot(y,depth= 10)                             #   将标记数据转为one_hot编码
    return x,y

def get_data():
    # 加载手写数字数据
    mnist = tf.keras.datasets.mnist
    (train_x, train_y), (test_x, test_y) = mnist.load_data()
    #   开始预处理数据
        #   训练数据
    db = tf.data.Dataset.from_tensor_slices((train_x,train_y))          #   将数据特征与标记组合
    db = db.map(preprocess)                                             #   根据预处理函数对组合数据进行处理
    db = db.shuffle(60000).batch(100)                                   #   将数据按10000行为单位打乱,并以100行为一个整体进行随机梯度下降
        #   测试数据
    db_test = tf.data.Dataset.from_tensor_slices((test_x,test_y))
    db_test = db_test.map(preprocess)
    db_test = db_test.shuffle(10000).batch(100)
    return db,db_test

#   测试代码
db,db_test = get_data()             #   获取训练和测试数据
#   设置超参
iter = 100
learn_rate = 0.01
#   定义模型和优化器
model = tf.keras.Sequential([
    layers.Dense(512, activation='relu'),
    layers.Dense(256, activation='relu'),           #   全连接
    layers.Dense(10)
])
optimizer = optimizers.SGD(learning_rate=learn_rate)            #   优化器

#   迭代代码
for i in range(iter):
    for step,(x,y) in enumerate(db):                            #   对每个batch样本做梯度计算
        # print('x.shape:{},y.shape:{}'.format(x.shape,y.shape))
        with tf.GradientTape() as tape:
            x = tf.reshape(x,(-1,28*28))               #   将28*28展开为784
            out = model(x)
            loss = tf.reduce_mean(tf.square(out-y))
        grads = tape.gradient(loss,model.trainable_variables)               #   求梯度
        grads,_ = tf.clip_by_global_norm(grads,15)                          #   梯度参数进行限幅,防止偏导的nan和无穷大
        optimizer.apply_gradients(zip(grads,model.trainable_variables))     #   优化器进行参数优化
        if step % 100 == 0:
            print('i:{} ,step:{} ,loss:{}'.format(i, step,loss.numpy()))
            #   求准确率
            acc = tf.equal(tf.argmax(out,axis=1),tf.argmax(y,axis=1))
            acc = tf.cast(acc,tf.int8)
            acc = tf.reduce_mean(tf.cast(acc,tf.float32))
            print('acc:',acc.numpy())

原文地址:https://www.cnblogs.com/cxhzy/p/13492396.html