【NOIP2019模拟2019.9.4】B(期望的线性性)

题目描述:

(1<=n,ai<=5*10^5)

题解:

我是弱智我不会期望线性。

(E(a[i]))表示第i个期望被减的个数。

(E(a[1])=a[1])

不难发现(E(a[i])(i>1))之间互不影响,其实这很难。

考虑固定这两个,它们两个选到的概率一样,选到其它的就无视就好了。

那么只用考虑(n=2)的情况,这个直接暴力枚举(a[1])结束时(a[i])有几个,乘个(1over 2)的几次方和组合数,式子如下:
(=a[i]-sum_{i=0}^{a[i]-1}C_{a[1]-1+i}^{a[i]-1}*{1over2}^{a[1]+i}*(a[i]-i))

可以用递推的方法依次求出(a[i]=1,2,3…)的答案。

时间复杂度:(O(n+max(a)))

Code:

#include<bits/stdc++.h>
#define fo(i, x, y) for(int i = x, B = y; i <= B; i ++)
#define ff(i, x, y) for(int i = x, B = y; i <  B; i ++)
#define fd(i, x, y) for(int i = x, B = y; i >= B; i --)
#define ll long long
#define pp printf
#define hh pp("
")
using namespace std;

const int mo = 323232323;

ll ksm(ll x, ll y) {
	ll s = 1;
	for(; y; y /= 2, x = x * x % mo)
		if(y & 1) s = s * x % mo;
	return s;
}

const ll ni2 = ksm(2, mo - 2);

const int N = 1e6 + 5;

int n, a[N];

ll fac[N], nf[N], a2[N];

void build(int n) {
	fac[0] = 1; fo(i, 1, n) fac[i] = fac[i - 1] * i % mo;
	nf[n] = ksm(fac[n], mo - 2); fd(i, n, 1) nf[i - 1] = nf[i] * i % mo;
	a2[0] = 1; fo(i, 1, n) a2[i] = a2[i - 1] * ni2 % mo;
}

ll C(int n, int m) {
	return fac[n] * nf[m] % mo * nf[n - m] % mo;
}

ll f[N], g[N];

int main() {
	freopen("b.in", "r", stdin);
	freopen("b.out", "w", stdout);
	scanf("%d", &n);
	fo(i, 1, n) scanf("%d", &a[i]);
	build(1e6 + 2);
	fo(i, 0, 5e5) {
		if(i) f[i] = f[i - 1], g[i] = g[i - 1];		
		f[i] = (f[i] + a2[a[1] + i] * C(a[1] + i - 1, i)) % mo;
		g[i] = (g[i] + a2[a[1] + i] * C(a[1] + i - 1, i) % mo * i) % mo;
	}
	ll ans = a[1];
	fo(i, 2, n) {
		ans += a[i];
		ans -= (f[a[i] - 1] * a[i] - g[a[i] - 1]) % mo;
	}
	ans = (ans % mo + mo) % mo;
	pp("%lld
", ans);
}
原文地址:https://www.cnblogs.com/coldchair/p/11470313.html