select与epoll分析

  关于select与epoll的区别,网上的文章已是一大堆。不过别人的终究是别人的,总得自己去理解才更深刻。于是在阅读了大量的文章后,再装模作样的看下源码,写下了自己的一些理解。

  在开始之前,要明白linux中分用户空间、内核空间,这相当于两块不能直接相互访问的内存。而用户程序要访问设备,包括网络、读写文件,都需要调用内核的相关函数。而调用内核相关函数,则往往需要从用户空间往内核拷贝一些数据,反之亦然。当调用非常频繁,这个拷贝的消耗也是不能忽略的。具体请参考:http://www.kerneltravel.net/jiaoliu/005.htm

  select相关函数的源代码http://lxr.free-electrons.com/source/fs/select.c

  epoll相关函数的源代码http://lxr.free-electrons.com/source/fs/eventpoll.c

  • select过程
  1. select函数为入口,完成超时结构体的copy,并调用core_sys_select处理文件描述符
SYSCALL_DEFINE5(select, int, n, fd_set __user *, inp, fd_set __user *, outp,
                 fd_set __user *, exp, struct timeval __user *, tvp)
 {
         struct timespec end_time, *to = NULL;
         struct timeval tv;
         int ret;
 
         if (tvp) {    /* 如果设置了超时,则需要将时间结构体从用户空间拷贝到内核空间 */
                 if (copy_from_user(&tv, tvp, sizeof(tv)))
                         return -EFAULT;
 
                 to = &end_time;  /* 格式化时间到结构体to中 */
                 if (poll_select_set_timeout(to,
                                 tv.tv_sec + (tv.tv_usec / USEC_PER_SEC),
                                 (tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC))
                         return -EINVAL;
         }
 
         ret = core_sys_select(n, inp, outp, exp, to); /* 拷贝文件描述符集合,然后调用do_select */
         ret = poll_select_copy_remaining(&end_time, tvp, 1, ret);/* 把处理后超时信息拷贝到用户空间 */
 
         return ret;
 }
View Code
  1. core_sys_select将文件描述符copy到内核空间,调用do_select进行处理,完成后再拷贝回用户空间
int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
                            fd_set __user *exp, struct timespec *end_time)
 {
         fd_set_bits fds;
         void *bits;
         int ret, max_fds;
         unsigned int size;
         struct fdtable *fdt;
         /* Allocate small arguments on the stack to save memory and be faster */
         long stack_fds[SELECT_STACK_ALLOC/sizeof(long)];
 
         ret = -EINVAL;
         if (n < 0)
                 goto out_nofds;
 
         /* max_fds can increase, so grab it once to avoid race */
         rcu_read_lock();
         fdt = files_fdtable(current->files);
         max_fds = fdt->max_fds;
         rcu_read_unlock();
         if (n > max_fds)
                 n = max_fds;
 
         /*
          * We need 6 bitmaps (in/out/ex for both incoming and outgoing),
          * since we used fdset we need to allocate memory in units of
          * long-words. 
          */
         size = FDS_BYTES(n);
         bits = stack_fds;
         if (size > sizeof(stack_fds) / 6) {
                 /* Not enough space in on-stack array; must use kmalloc */
                 ret = -ENOMEM;
                 bits = kmalloc(6 * size, GFP_KERNEL);
                 if (!bits)
                         goto out_nofds;
         }
         fds.in      = bits;
         fds.out     = bits +   size;
         fds.ex      = bits + 2*size;
         fds.res_in  = bits + 3*size;
         fds.res_out = bits + 4*size;
         fds.res_ex  = bits + 5*size;

         /* get_fd_set只是将文件描述符从用户空间拷贝到内核空间 */

         if ((ret = get_fd_set(n, inp, fds.in)) ||
             (ret = get_fd_set(n, outp, fds.out)) ||
             (ret = get_fd_set(n, exp, fds.ex)))
                 goto out;
         zero_fd_set(n, fds.res_in);
         zero_fd_set(n, fds.res_out);
         zero_fd_set(n, fds.res_ex);
 
         ret = do_select(n, &fds, end_time);
 
         if (ret < 0)
                 goto out;
         if (!ret) {
                 ret = -ERESTARTNOHAND;
                 if (signal_pending(current))
                         goto out;
                 ret = 0;
         }
 
        /* get_fd_set只是将文件描述符从内核空间拷贝到用户空间 */
         if (set_fd_set(n, inp, fds.res_in) ||
             set_fd_set(n, outp, fds.res_out) ||
             set_fd_set(n, exp, fds.res_ex))
                 ret = -EFAULT;
 
 out:
         if (bits != stack_fds)
                 kfree(bits);
 out_nofds:
         return ret;
 }

 int get_fd_set(unsigned long nr, void __user *ufdset, unsigned long *fdset)
 {
         nr = FDS_BYTES(nr);
         if (ufdset)
                 return copy_from_user(fdset, ufdset, nr) ? -EFAULT : 0;
 
         memset(fdset, 0, nr);
         return 0;
 }
View Code
  1. do_select先设置设备事件唤醒函数,初始化等待队列,然后遍历所有文件描述符查找事件。如果找不到,进程休眠,直到被设备唤醒或超时,然后再去遍历所有文件描述符重新查找事件。
int do_select(int n, fd_set_bits *fds, struct timespec *end_time)
{
        ktime_t expire, *to = NULL;
        struct poll_wqueues table;   /* 注意这是等待队列 */
        poll_table *wait;
        int retval, i, timed_out = 0;
        unsigned long slack = 0;
        unsigned int busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0;
        unsigned long busy_end = 0;

        rcu_read_lock();
        retval = max_select_fd(n, fds);
        rcu_read_unlock();

        if (retval < 0)
                return retval;
        n = retval;

        /*
            这里初始化队列信息,设置设备唤醒回调指针
            当程序进入休眠后,如果设备有事件发生,根据回调指针唤醒当前进程
        */
        poll_initwait(&table);
        wait = &table.pt;
        if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {
                wait->_qproc = NULL;
                timed_out = 1;
        }

        if (end_time && !timed_out)
                slack = select_estimate_accuracy(end_time);

        retval = 0;
        for (;;) {       /* 循环,方便唤醒后重新遍历文件描述符查找事件 */
                unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
                bool can_busy_loop = false;

                inp = fds->in; outp = fds->out; exp = fds->ex;
                rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;

                /* 遍历所有的文件描述符,查找是否有文件描述符存在读写、异常事件 */
                for (i = 0; i < n; ++rinp, ++routp, ++rexp) {
                        unsigned long in, out, ex, all_bits, bit = 1, mask, j;
                        unsigned long res_in = 0, res_out = 0, res_ex = 0;

                        in = *inp++; out = *outp++; ex = *exp++;
                        all_bits = in | out | ex;
                        if (all_bits == 0) {
                                i += BITS_PER_LONG;
                                continue;
                        }

                        for (j = 0; j < BITS_PER_LONG; ++j, ++i, bit <<= 1) {
                                struct fd f;
                                if (i >= n)
                                        break;
                                if (!(bit & all_bits))
                                        continue;
                                f = fdget(i);
                                if (f.file) {
                                        const struct file_operations *f_op;
                                        f_op = f.file->f_op;
                                        mask = DEFAULT_POLLMASK;
                                        /* 如果找到对应的poll函数,找不到就是设备驱动没写好,socket对应的函数是sock_poll */
                                        if (f_op->poll) {
                                                wait_key_set(wait, in, out,
                                                             bit, busy_flag);
                                                /* 得到当前设备状态,这里有wait,但不会阻塞。只是设置回调指针 */
                                                mask = (*f_op->poll)(f.file, wait);
                                        }
                                        fdput(f);

                                        /* 下面按位检测事件 */
                                        if ((mask & POLLIN_SET) && (in & bit)) {
                                                res_in |= bit;
                                                retval++;
                                                wait->_qproc = NULL;
                                        }
                                        if ((mask & POLLOUT_SET) && (out & bit)) {
                                                res_out |= bit;
                                                retval++;
                                                wait->_qproc = NULL;
                                        }
                                        if ((mask & POLLEX_SET) && (ex & bit)) {
                                                res_ex |= bit;
                                                retval++;
                                                wait->_qproc = NULL;
                                        }
                                        /* got something, stop busy polling */
                                        if (retval) {
                                                can_busy_loop = false;
                                                busy_flag = 0;

                                        /*
                                         * only remember a returned
                                         * POLL_BUSY_LOOP if we asked for it
                                         */
                                        } else if (busy_flag & mask)
                                                can_busy_loop = true;

                                }
                        }
                        if (res_in)
                                *rinp = res_in;
                        if (res_out)
                                *routp = res_out;
                        if (res_ex)
                                *rexp = res_ex;
                        cond_resched();
                }
                wait->_qproc = NULL;
                /* 如果已经有结果,直接返回 */
                if (retval || timed_out || signal_pending(current))
                        break;
                if (table.error) {
                        retval = table.error;
                        break;
                }

                /* only if found POLL_BUSY_LOOP sockets && not out of time */
                if (can_busy_loop && !need_resched()) {
                        if (!busy_end) {
                                busy_end = busy_loop_end_time();
                                continue;
                        }
                        if (!busy_loop_timeout(busy_end))
                                continue;
                }
                busy_flag = 0;

                /*
                 * If this is the first loop and we have a timeout
                 * given, then we convert to ktime_t and set the to
                 * pointer to the expiry value.
                 */
                if (end_time && !to) {
                        expire = timespec_to_ktime(*end_time);
                        to = &expire;
                }

                if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE, /* 这里阻塞,直到超时 */
                                           to, slack))
                        timed_out = 1;  /* 设置超时,上面为什么会用一个for(;;)就是为了超时后还去检查一次是否有事件 */
        }

        poll_freewait(&table);

        return retval;
}
View Code
  • epoll过程
  1. epoll_create创建一个epoll结构,并初始化监听链表、就绪链表。其实这是创建一个文件,其内存位于内核空间上。这就相当于mmap一个文件了。
SYSCALL_DEFINE1(epoll_create1, int, flags)
{
        int error, fd;
        struct eventpoll *ep = NULL;
        struct file *file;

        /* Check the EPOLL_* constant for consistency.  */
        BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);

        if (flags & ~EPOLL_CLOEXEC)
                return -EINVAL;
        /*
         * Create the internal data structure ("struct eventpoll").
         */
        error = ep_alloc(&ep);
        if (error < 0)
                return error;
        /*
         * Creates all the items needed to setup an eventpoll file. That is,
         * a file structure and a free file descriptor.
         */
        fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));/* 分配一个文件描述符 */
        if (fd < 0) {
                error = fd;
                goto out_free_ep;
        }
        file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
                                 O_RDWR | (flags & O_CLOEXEC));
        if (IS_ERR(file)) {
                error = PTR_ERR(file);
                goto out_free_fd;
        }
        ep->file = file;
        fd_install(fd, file);
        return fd;

out_free_fd:
        put_unused_fd(fd);
out_free_ep:
        ep_free(ep);
        return error;
}

 static int ep_alloc(struct eventpoll **pep)
 {
         int error;
         struct user_struct *user;
         struct eventpoll *ep;
 
         user = get_current_user();
         error = -ENOMEM;
         ep = kzalloc(sizeof(*ep), GFP_KERNEL); /* 在内核上分配一块内存 */
         if (unlikely(!ep))
                 goto free_uid;
 
         spin_lock_init(&ep->lock);
         mutex_init(&ep->mtx);
         init_waitqueue_head(&ep->wq);    /* 初始化监听文件描述符链表 */
         init_waitqueue_head(&ep->poll_wait);
         INIT_LIST_HEAD(&ep->rdllist);   /* 初始化就绪链表 */
         ep->rbr = RB_ROOT;
         ep->ovflist = EP_UNACTIVE_PTR;
         ep->user = user;
 
         *pep = ep;
 
         return 0;
 
 free_uid:
         free_uid(user);
         return error;
 }
View Code
  1. epoll_ctl来控制epoll结构。即负责epoll中监听链表的增、删、查、改。注意这里可能会产生一次用户空间到内核空间的拷贝。
SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
                struct epoll_event __user *, event)
{
        int error;
        int full_check = 0;
        struct fd f, tf;
        struct eventpoll *ep;
        struct epitem *epi;
        struct epoll_event epds;
        struct eventpoll *tep = NULL;

        error = -EFAULT;
        if (ep_op_has_event(op) &&
            copy_from_user(&epds, event, sizeof(struct epoll_event))) /* 这里可能会产生拷贝 */
                goto error_return;

        error = -EBADF;
        f = fdget(epfd);
        if (!f.file)
                goto error_return;

        /* Get the "struct file *" for the target file */
        tf = fdget(fd);
        if (!tf.file)
                goto error_fput;

        /* The target file descriptor must support poll */
        error = -EPERM;
        if (!tf.file->f_op->poll)
                goto error_tgt_fput;

        /* Check if EPOLLWAKEUP is allowed */
        if (ep_op_has_event(op))
                ep_take_care_of_epollwakeup(&epds);

        /*
         * We have to check that the file structure underneath the file descriptor
         * the user passed to us _is_ an eventpoll file. And also we do not permit
         * adding an epoll file descriptor inside itself.
         */
        error = -EINVAL;
        if (f.file == tf.file || !is_file_epoll(f.file))
                goto error_tgt_fput;

        /*
         * At this point it is safe to assume that the "private_data" contains
         * our own data structure.
         */
        ep = f.file->private_data;

        /*
         * When we insert an epoll file descriptor, inside another epoll file
         * descriptor, there is the change of creating closed loops, which are
         * better be handled here, than in more critical paths. While we are
         * checking for loops we also determine the list of files reachable
         * and hang them on the tfile_check_list, so we can check that we
         * haven't created too many possible wakeup paths.
         *
         * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
         * the epoll file descriptor is attaching directly to a wakeup source,
         * unless the epoll file descriptor is nested. The purpose of taking the
         * 'epmutex' on add is to prevent complex toplogies such as loops and
         * deep wakeup paths from forming in parallel through multiple
         * EPOLL_CTL_ADD operations.
         */
        mutex_lock_nested(&ep->mtx, 0);
        if (op == EPOLL_CTL_ADD) {
                if (!list_empty(&f.file->f_ep_links) ||
                                                is_file_epoll(tf.file)) {
                        full_check = 1;
                        mutex_unlock(&ep->mtx);
                        mutex_lock(&epmutex);
                        if (is_file_epoll(tf.file)) {
                                error = -ELOOP;
                                if (ep_loop_check(ep, tf.file) != 0) {
                                        clear_tfile_check_list();
                                        goto error_tgt_fput;
                                }
                        } else
                                list_add(&tf.file->f_tfile_llink,
                                                        &tfile_check_list);
                        mutex_lock_nested(&ep->mtx, 0);
                        if (is_file_epoll(tf.file)) {
                                tep = tf.file->private_data;
                                mutex_lock_nested(&tep->mtx, 1);
                        }
                }
        }

        /*
         * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
         * above, we can be sure to be able to use the item looked up by
         * ep_find() till we release the mutex.
         */
        epi = ep_find(ep, tf.file, fd);

        error = -EINVAL;
        switch (op) {
        case EPOLL_CTL_ADD:
                if (!epi) {
                        epds.events |= POLLERR | POLLHUP;
                        error = ep_insert(ep, &epds, tf.file, fd, full_check);
                } else
                        error = -EEXIST;
                if (full_check)
                        clear_tfile_check_list();
                break;
        case EPOLL_CTL_DEL:
                if (epi)
                        error = ep_remove(ep, epi);
                else
                        error = -ENOENT;
                break;
        case EPOLL_CTL_MOD:
                if (epi) {
                        epds.events |= POLLERR | POLLHUP;
                        error = ep_modify(ep, epi, &epds);
                } else
                        error = -ENOENT;
                break;
        }
        if (tep != NULL)
                mutex_unlock(&tep->mtx);
        mutex_unlock(&ep->mtx);

error_tgt_fput:
        if (full_check)
                mutex_unlock(&epmutex);

        fdput(tf);
error_fput:
        fdput(f);
error_return:

        return error;
}
View Code
  1. epoll_wait只做一些容错預处理,然后调用ep_poll
SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
                int, maxevents, int, timeout)
{
        int error;
        struct fd f;
        struct eventpoll *ep;

        /* The maximum number of event must be greater than zero */
        if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
                return -EINVAL;

        /* Verify that the area passed by the user is writeable */
        if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
                return -EFAULT;

        /* Get the "struct file *" for the eventpoll file */
        f = fdget(epfd);
        if (!f.file)
                return -EBADF;

        /*
         * We have to check that the file structure underneath the fd
         * the user passed to us _is_ an eventpoll file.
         */
        error = -EINVAL;
        if (!is_file_epoll(f.file))
                goto error_fput;

        /*
         * At this point it is safe to assume that the "private_data" contains
         * our own data structure.
         */
        ep = f.file->private_data;

        /* Time to fish for events ... */
        error = ep_poll(ep, events, maxevents, timeout);

error_fput:
        fdput(f);
        return error;
}
View Code
  1. ep_poll初始化等待队列,并将唤醒回调设置为往就绪队列添加设备,再唤醒进程。这样,进程只需要检测就绪队列是否为空,如果为空,则休眠直到超时或被唤醒。
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
                    int maxevents, long timeout)
 {
         int res = 0, eavail, timed_out = 0;
         unsigned long flags;
         long slack = 0;
         wait_queue_t wait;
         ktime_t expires, *to = NULL;
 
         if (timeout > 0) {
                 struct timespec end_time = ep_set_mstimeout(timeout);
 
                 slack = select_estimate_accuracy(&end_time);
                 to = &expires;
                 *to = timespec_to_ktime(end_time);
         } else if (timeout == 0) {
                 /*
                  * Avoid the unnecessary trip to the wait queue loop, if the
                  * caller specified a non blocking operation.
                  */
                 timed_out = 1;
                 spin_lock_irqsave(&ep->lock, flags);
                 goto check_events;
         }
 
 fetch_events:
         spin_lock_irqsave(&ep->lock, flags);
 
         if (!ep_events_available(ep)) {
                 /*
                  * We don't have any available event to return to the caller.
                  * We need to sleep here, and we will be wake up by
                  * ep_poll_callback() when events will become available.
                  */

                 /*
                    这里初始化等待队列,如果一个设备有事件,則会先往就绪链表中加就绪设备
                    然后唤醒进程
                */
                 init_waitqueue_entry(&wait, current);
                 __add_wait_queue_exclusive(&ep->wq, &wait);
 
                 for (;;) {
                         /*
                          * We don't want to sleep if the ep_poll_callback() sends us
                          * a wakeup in between. That's why we set the task state
                          * to TASK_INTERRUPTIBLE before doing the checks.
                          */
                         set_current_state(TASK_INTERRUPTIBLE);
                         if (ep_events_available(ep) || timed_out)
                                 break;
                         if (signal_pending(current)) {
                                 res = -EINTR;
                                 break;
                         }
 
                         spin_unlock_irqrestore(&ep->lock, flags);
                         if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))  /* 进入休眠 */
                                 timed_out = 1;
 
                         spin_lock_irqsave(&ep->lock, flags);
                 }
                 __remove_wait_queue(&ep->wq, &wait);/* 删除等待队列 */
 
                 set_current_state(TASK_RUNNING);
         }
 check_events:
         /* Is it worth to try to dig for events ? */
         eavail = ep_events_available(ep);
 
         spin_unlock_irqrestore(&ep->lock, flags);
 
         /*
          * Try to transfer events to user space. In case we get 0 events and
          * there's still timeout left over, we go trying again in search of
          * more luck.
          */
         if (!res && eavail &&
             !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
                 goto fetch_events;
 
         return res;
 }

 static inline int ep_events_available(struct eventpoll *ep)
 {
         return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
 }
View Code

  总结一下,select和epoll的流程如下:

如果要比性能,那么大概有以下的区别:

  • 每一次select,都需要拷贝两次;而epoll只在添加新文件描述符里拷贝一次,其余的使用mmap进行交互
  • 每次select,都需要遍历所有的文件描述符(如果第一次未有事件,则是遍历两次);而epoll只是查询一下就绪列表是否为空。

  一句话,select是你每天起床都去各个快递公司问是否有自己的快递,而epoll是每天起床到门口的邮箱查下是否有自己的快递。

原文地址:https://www.cnblogs.com/coding-my-life/p/4392656.html