linux netfilter iptable_filter

 内核中将filter模块被组织成了一个独立的模块,每个这样独立的模块中都有个类似的init()初始化函数;首先来看一下filter模块是如何将自己的钩子函数注册到netfilter所管辖的几个hook点。

filter 模块钩子点:

/* 在LOCAL_IN,FORWARD, LOCAL_OUT钩子点工作 */
#define FILTER_VALID_HOOKS ((1 << NF_INET_LOCAL_IN) | \
                (1 << NF_INET_FORWARD) | \
                (1 << NF_INET_LOCAL_OUT))

static const struct xt_table packet_filter = {
    .name        = "filter",
    .valid_hooks    = FILTER_VALID_HOOKS,
    .me        = THIS_MODULE,
    .af        = NFPROTO_IPV4,
    .priority    = NF_IP_PRI_FILTER,
    .table_init    = iptable_filter_table_init,
};

ilist

struct ipt_standard {
    struct ipt_entry entry;
    struct xt_standard_target target;
};
struct ipt_error {
    struct ipt_entry entry;
    struct xt_error_target target;
};

void *ipt_alloc_initial_table(const struct xt_table *info)
{
    unsigned int hook_mask = info->valid_hooks; //LOCAL_IN、FORWARD、LOCAL_OUT 
    unsigned int nhooks = hweight32(hook_mask); //这里得到3,上面hookmask对应三个hook点。
    unsigned int bytes = 0, hooknum = 0, i = 0; 
//看到函数的最后,知道返回值是tbl,而这里的结构体内嵌的三个结构体是tbl的组成,三个结构体的数据结构拓扑图如图11.1.3。
    struct {
        struct ipt_replace repl; 
        struct ipt_standard entries[nhooks]; 
        struct ipt_error term; 
    } *tbl = kzalloc(sizeof(*tbl), GFP_KERNEL); 
    if (tbl == NULL) 
        return NULL; 
    strncpy(tbl->repl.name, info->name, sizeof(tbl->repl.name)); 
    tbl->term = (struct ipt_error)IPT_ERROR_INIT; 
    tbl->repl.valid_hooks = hook_mask; 
    tbl->repl.num_entries = nhooks + 1; 
    tbl->repl.size = nhooks * sizeof(struct ipt_standard) + sizeof(struct ipt_error); 
    for (; hook_mask != 0; hook_mask >>= 1, ++hooknum) {
        if (!(hook_mask & 1)) 
            continue; 
        tbl->repl.hook_entry[hooknum] = bytes; 
        tbl->repl.underflow[hooknum]  = bytes; 
        tbl->entries[i++] = (struct ipt_standard) IPT_STANDARD_INIT(NF_ACCEPT); 
        bytes += sizeof(struct ipt_standard); 
    }
    return  tbl; 
}
/*filter模块初始化时先调用ipt_register_table向Netfilter完成filter过滤表的注册,然后调用ipt_register_hooks完成自己钩子函数的注册
*/
initial_table.repl= { "filter", FILTER_VALID_HOOKS, 4,
       sizeof(struct ipt_standard) * 3 + sizeof(struct ipt_error),

       { [NF_IP_LOCAL_IN] = 0,
         [NF_IP_FORWARD] = sizeof(struct ipt_standard),
         [NF_IP_LOCAL_OUT] = sizeof(struct ipt_standard) * 2
       },
       { [NF_IP_LOCAL_IN] = 0,
         [NF_IP_FORWARD] = sizeof(struct ipt_standard),
         [NF_IP_LOCAL_OUT] = sizeof(struct ipt_standard) * 2
       },
      0, NULL, { }
};
static int __net_init iptable_filter_table_init(struct net *net) { struct ipt_replace *repl; int err; /* filter表已经被初始化了,返回 */ if (net->ipv4.iptable_filter) return 0; /* 分配初始化表,用于下面的表注册 */ repl = ipt_alloc_initial_table(&packet_filter); if (repl == NULL) return -ENOMEM; /* Entry 1 is the FORWARD hook */ /* 入口1是否为FORWARD钩子点时的verdict值设置 */ ((struct ipt_standard *)repl->entries)[1].target.verdict = forward ? -NF_ACCEPT - 1 : -NF_DROP - 1; err = ipt_register_table(net, &packet_filter, repl, filter_ops, &net->ipv4.iptable_filter); kfree(repl); return err; }

---最后一个柔性数组struct ipt_entry  entries[0]中保存了默认的那四条规则

test

/*
简而言之ipt_register_table()所做的事情就是从模板initial_table变量的repl成员里取出初始化数据,然后申请一块内存并用repl里的值来初始化它,
之后将这块内存的首地址赋给packet_filter表的private成员,最后将packet_filter挂载到xt[2].tables的双向链表中。
*/
////iptable netfilter表注册添加到该链表中   iptable_filter.ko里面用结构xt_table,该表现源从packet_filter来的  见xt_register_table
//table头部:net->xt.tables[table->af],所有table的头部链表
int ipt_register_table(struct net *net, const struct xt_table *table,
               const struct ipt_replace *repl,
               const struct nf_hook_ops *ops, struct xt_table **res)
{
    int ret;
    struct xt_table_info *newinfo;
    struct xt_table_info bootstrap = {0};
    void *loc_cpu_entry;
    struct xt_table *new_table;

    newinfo = xt_alloc_table_info(repl->size);//malloc  for  xt_table  filter size为sizeof(struct ipt_standard) * 3 + sizeof(struct ipt_error),
    if (!newinfo)
        return -ENOMEM;

    loc_cpu_entry = newinfo->entries;//将表中的规则入口地址赋值给loc_cpu_entry
    memcpy(loc_cpu_entry, repl->entries, repl->size);//拷贝repl里面的entries规则到xt_table_info表里面的entries里面
    
 /*translate_table函数将由newinfo所表示的table的各个规则进行边界检查,
 然后对于newinfo所指的xt_talbe_info结构中的hook_entries和underflows赋予正确的值,
 最后将表项向其他cpu拷贝*/
    ret = translate_table(net, newinfo, loc_cpu_entry, repl);
    if (ret != 0)
        goto out_free;
/*
packet_filter中没对其private成员进行初始化,那么这个工作自然而然的就留给了xt_register_table()函数来完成,它也定义在x_tables.c文件中,它主要完成两件事:

    1)、将由newinfo参数所存储的表里面关于规则的基本信息结构体xt_table_info{}变量赋给由table参数所表示的packet_filter{}的private成员变量;

2)、根据packet_filter的协议号af,将filter表挂到变量xt中tables成员变量所表示的双向链表里。
*/
    new_table = xt_register_table(net, table, &bootstrap, newinfo);
    if (IS_ERR(new_table)) {
        ret = PTR_ERR(new_table);
        goto out_free;
    }

    /* set res now, will see skbs right after nf_register_net_hooks */
    WRITE_ONCE(*res, new_table);

    ret = nf_register_net_hooks(net, ops, hweight32(table->valid_hooks));
    if (ret != 0) {
        __ipt_unregister_table(net, new_table);
        *res = NULL;
    }

    return ret;

out_free:
    xt_free_table_info(newinfo);
    return ret;
}

 

Filter回调函数

 在上述ipt_register_table 实现中会调用nf_register_net_hooks  注册钩子回调函数

Netfilter中默认表filter在建立时则在NF_IP_LOCAL_IN,NF_IP_FORWARD,NF_IP_LOCAL_OUT钩子点注册了钩子函数iptable_filter_hook,其核心ipt_do_table()对相对应的表和钩子点的规则进行遍历

static unsigned int
iptable_filter_hook(void *priv, struct sk_buff *skb,
            const struct nf_hook_state *state)
{/* LOCAL_OUT && (数据长度不足ip头 || 实际ip头部长度不足最小ip头),在使用raw socket */
    if (state->hook == NF_INET_LOCAL_OUT &&
        (skb->len < sizeof(struct iphdr) ||
         ip_hdrlen(skb) < sizeof(struct iphdr)))
        /* root is playing with raw sockets. */
        return NF_ACCEPT;
/* 核心规则匹配流程 */
    return ipt_do_table(skb, state, state->net->ipv4.iptable_filter);
}

可知其回调函数核心函数为:

/* Returns one of the generic firewall policies, like NF_ACCEPT. 
包过滤子功能:包过滤一共定义了四个hook函数,这四个hook函数本质最后都调用了ipt_do_table()函数。
实际上是直接调用ipt_do_table(ip_tables.c)函数

接下来就是根据table里面的entry来处理数据包了

一个table就是一组防火墙规则的集合

而一个entry就是一条规则,每个entry由一系列的matches和一个target组成

一旦数据包匹配了该某个entry的所有matches,就用target来处理它
Match又分为两部份,一部份为一些基本的元素,如来源/目的地址,进/出网口,协议等,对应了struct ipt_ip,
我们常常将其称为标准的match,另一部份match则以插件的形式存在,是动态可选择,也允许第三方开发的,
常常称为扩展的match,如字符串匹配,p2p匹配等。同样,规则的target也是可扩展的。这样,一条规则占用的空间,
可以分为:struct ipt_ip+n*match+n*target,(n表示了其个数,这里的match指的是可扩展的match部份)。
*/
unsigned int
ipt_do_table(struct sk_buff *skb,
         const struct nf_hook_state *state,
         struct xt_table *table)
{
    unsigned int hook = state->hook;
    static const char nulldevname[IFNAMSIZ] __attribute__((aligned(sizeof(long))));
    const struct iphdr *ip;
    /* Initializing verdict to NF_DROP keeps gcc happy. */
    unsigned int verdict = NF_DROP;
    const char *indev, *outdev;
    const void *table_base;
    struct ipt_entry *e, **jumpstack;
    unsigned int stackidx, cpu;
    const struct xt_table_info *private;
    struct xt_action_param acpar;
    unsigned int addend;

    /* Initialization */
    stackidx = 0;
    ip = ip_hdr(skb);
    indev = state->in ? state->in->name : nulldevname;
    outdev = state->out ? state->out->name : nulldevname;
    /* We handle fragments by dealing with the first fragment as
     * if it was a normal packet.  All other fragments are treated
     * normally, except that they will NEVER match rules that ask
     * things we don't know, ie. tcp syn flag or ports).  If the
     * rule is also a fragment-specific rule, non-fragments won't
     * match it. */
    acpar.fragoff = ntohs(ip->frag_off) & IP_OFFSET;
    acpar.thoff   = ip_hdrlen(skb);
    acpar.hotdrop = false;
    acpar.net     = state->net;
    acpar.in      = state->in;
    acpar.out     = state->out;
    acpar.family  = NFPROTO_IPV4;
    acpar.hooknum = hook;

    IP_NF_ASSERT(table->valid_hooks & (1 << hook));
    local_bh_disable();
    addend = xt_write_recseq_begin();
    private = table->private;
    cpu        = smp_processor_id();
    /*
     * Ensure we load private-> members after we've fetched the base
     * pointer.
     */
    smp_read_barrier_depends();
    table_base = private->entries;
    jumpstack  = (struct ipt_entry **)private->jumpstack[cpu];

    /* Switch to alternate jumpstack if we're being invoked via TEE.
     * TEE issues XT_CONTINUE verdict on original skb so we must not
     * clobber the jumpstack.
     *
     * For recursion via REJECT or SYNPROXY the stack will be clobbered
     * but it is no problem since absolute verdict is issued by these.
     */
    if (static_key_false(&xt_tee_enabled))
        jumpstack += private->stacksize * __this_cpu_read(nf_skb_duplicated);

    e = get_entry(table_base, private->hook_entry[hook]);

    do {
        const struct xt_entry_target *t;
        const struct xt_entry_match *ematch;
        struct xt_counters *counter;

        IP_NF_ASSERT(e);
        /*

   匹配IP包,成功则继续匹配下去,否则跳到下一个规则  

   ip_packet_match匹配标准match, 也就是ip报文中的一些基本的元素,如来源/目的地址,进/出网口,协议等,因为要匹配的内容是固定的,所以具体的函数实现也是固定的。

   而IPT_MATCH_ITERATE (应该猜到实际是调用第二个参数do_match函数)匹配扩展的match,如字符串匹配,p2p匹配等,因为要匹配的内容不确定,所以函数的实现也是不一样的,所以do_match的实现就和具体的match模块有关了。 

   这里的&e->ip就是上面的ipt_ip结构

*/
        if (!ip_packet_match(ip, indev, outdev,
            &e->ip, acpar.fragoff)) {//遍历匹配match
 no_match:
            e = ipt_next_entry(e);
            continue;
        }

        xt_ematch_foreach(ematch, e) {
            acpar.match     = ematch->u.kernel.match;
            acpar.matchinfo = ematch->data;
            if (!acpar.match->match(skb, &acpar))
                goto no_match;
        }

        counter = xt_get_this_cpu_counter(&e->counters);
        ADD_COUNTER(*counter, skb->len, 1);
/* ipt_get_target获取当前target,t是一个ipt_entry_target结构,这个函数就是简单的返回e+e->target_offset

每个entry只有一个target,所以不需要像match一样遍历,直接指针指过去了*/
        t = ipt_get_target(e);
        IP_NF_ASSERT(t->u.kernel.target);

#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
        /* The packet is traced: log it */
        if (unlikely(skb->nf_trace))
            trace_packet(state->net, skb, hook, state->in,
                     state->out, table->name, private, e);
#endif
/* 这里都还是和扩展的match的匹配很像,但是下面一句

有句注释:Standard target? 判断当前target是否标准的target?

而判断的条件是u.kernel.target->target,就是ipt_target结构里的target函数是否为空,
而下面还出现了ipt_standard_target结构和verdict变量,好吧,先停下,看看ipt_standard_target结构再说 
ipt_standard_target的定义:
struct ipt_standard_target
{
     struct ipt_entry_target target;
      int verdict;
};
也就比ipt_entry_target多了一个verdict(判断),请看前面的nf_hook_slow()函数,里面也有verdict变量,
用来保存hook函数的返回值,常见的有这些
#define NF_DROP 0
#define NF_ACCEPT 1
#define NF_STOLEN 2
#define NF_QUEUE 3
#define NF_REPEAT 4
#define RETURN     IPT_RETURN
#define IPT_RETURN     (-NF_MAX_VERDICT - 1)
#define NF_MAX_VERDICT NF_REPEAT 
我们知道chain(链)是某个检查点上检查的规则的集合。除了默认的chain外,用户还可以创建新的chain。在iptables中,
同一个chain里的规则是连续存放的。默认的chain的最后一条规则的target是chain的policy。用户创建的chain的最后一条
规则的target的调用返回值是NF_RETURN,遍历过程将返回原来的chain。规则中的target也可以指定跳转到某个用户创建的chain上,
这时它的target是ipt_stardard_target,并且这个target的verdict值大于0。如果在用户创建的chain上没有找到匹配的规则,
遍历过程将返回到原来chain的下一条规则上。事实上,target也是分标准的和扩展的,但前面说了,毕竟一个是条件,一个是动作,
target的标准和扩展的关系和match还是不太一样的,不能一概而论,而且在标准的target里还可以根据verdict的值再
划分为内建的动作或者跳转到自定义链简单的说,标准target就是内核内建的一些处理动作或其延伸
扩展的当然就是完全由用户定义的处理动作
*/

        if (!t->u.kernel.target->target) {
            int v;

            v = ((struct xt_standard_target *)t)->verdict;
            /*v小于0,动作是默认内建的动作,也可能是自定义链已经结束而返回return标志*/
            if (v < 0) { /*如果v大于0,记录是跳转偏移量,小于0,是标准target*/
                /* Pop from stack? */
                if (v != XT_RETURN) {
                    verdict = (unsigned int)(-v) - 1;
                    break;
                }/* e和back分别是当前表的当前Hook的规则的起始偏移量和上限偏移量,即entry的头和尾,e=back */
                if (stackidx == 0) {
                    e = get_entry(table_base,
                        private->underflow[hook]);
                } else {
                    e = jumpstack[--stackidx];
                    e = ipt_next_entry(e);
                }
                continue;
            }
            /* v大于等于0,处理用户自定义链,如果当前链后还有规则,而要跳到自定义链去执行,那么需要保存一个back点,
            以指示程序在匹配完自定义链后,应当继续匹配的规则位置,自然地, back点应该为当前规则的下一条规则(如果存在的话)
至于为什么下一条规则的地址是table_base+v, 就要去看具体的规则是如何添加的了 */
            if (table_base + v != ipt_next_entry(e) &&
                !(e->ip.flags & IPT_F_GOTO))
                jumpstack[stackidx++] = e;

            e = get_entry(table_base, v); /*根据verdict的偏移量找到跳转的rule*/
            continue;
        }

        acpar.target   = t->u.kernel.target;
        acpar.targinfo = t->data; /*如果是扩展target,就执行扩展targe的target处理函数*/

        verdict = t->u.kernel.target->target(skb, &acpar);
        /* Target might have changed stuff. */
        ip = ip_hdr(skb);
        if (verdict == XT_CONTINUE)
            e = ipt_next_entry(e);
        else
            /* Verdict */
            break;
    } while (!acpar.hotdrop);

    xt_write_recseq_end(addend);
    local_bh_enable();

    if (acpar.hotdrop)
        return NF_DROP;
    else return verdict;
}

filter回调函数 和 match、target之间的关系:

http代理服务器(3-4-7层代理)-网络事件库公共组件、内核kernel驱动 摄像头驱动 tcpip网络协议栈、netfilter、bridge 好像看过!!!! 但行好事 莫问前程 --身高体重180的胖子
原文地址:https://www.cnblogs.com/codestack/p/10850663.html