广义逆阵

广义逆阵$A^+$

设$A=A_{n imes n}$,具有如下四个性质:

(1)$AXA=A$

(2)$XAX=X$

(3)$(AX)^{H}=AX$

(4)$(XA)^{H}=XA$

称$X$为$A$的广义逆阵,记为$X=A^+$

常见的$A^+$:

(1)$0_{m imes n}^+=0_{n imes n}$

(2)可逆方阵$A=A_{n imes n}$,$A^+=A^{-1}$

(3)一阶复数阵a:$a=0 Rightarrow a^+=0$,$a e 0 Rightarrow a^+=frac{1}{a}$

$A^+$的唯一性:给定A后,只有唯一的$A^+$。

求解$B^+$:

(1)(高阵)若$B=B_{m imes r}$,$rank(B)=r$,即B为高阵,则$B^+=B_L=(B^HB)^{-1}B^H$,且$B^+B=I$

(1)(低阵)若$B=B_{r imes n}$,$rank(B)=r$,即B为低阵,则$B^+=B_L=B^H(BB^H)^{-1}$,且$BB^+=I$

(3)高低分解公式:$A=A_{m imes n}=BC$为高低分解,则有$A^+=C^+B^+$且$B^+B=CC^+=I$,其中$B^+=(B^HB)^{-1}B^H, C^+=C^H(CC^H)^{-1}$。

(4)

[egin{array}{l}
B = left[ {egin{array}{*{20}{c}}
A&0
end{array}} ight] Rightarrow {B^ + } = left[ {egin{array}{*{20}{c}}
{{A^ + }}\
{{0^ + }}
end{array}} ight]\
B = left[ {egin{array}{*{20}{c}}
A\
0
end{array}} ight] Rightarrow {B^ + } = left[ {egin{array}{*{20}{c}}
{{A^ + }}&{{0^ + }}
end{array}} ight]
end{array}]

(5)(正SVD分解)若$A=P Delta Q^H$,为正SVD,P和Q为列半酉阵,$P^HP=Q^HQ=I$,则$A^+=QDelta^{-1}P^H$

证明:

1、[A{A^ + }A = (PDelta {Q^H})(Q{Delta ^{ - 1}}{P^H})(PDelta {Q^H}) = PDelta {Q^H} = A]

2、[{A^ + }A{A^ + } = (Q{Delta ^{ - 1}}{P^H})(PDelta {Q^H})(Q{Delta ^{ - 1}}{P^H}) = Q{Delta ^{ - 1}}{P^H} = {A^ + }]

3、[A{A^ + } = P{P^H}(Hermite)]

4、[{A^ + }A = {Q^H}Q(Hermite)]

(6)(秩1分解)若$A=A_{m imes n}$且$rank(A)=1$,则$A = frac{{{A^H}}}{{sum {{{left| {{a_{ij}}} ight|}^2}} }}$

(7)(QR分解)若$A=QR$,$Q^HQ=I$,则$A^+=R^+Q^+=R^{-1}Q^+$

(8)(谱分解)若A为正规阵,且有谱分解$A=lambda_1G_1+lambda_2G_2+...+lambda_kG_k$,则$A^+=lambda_1^+G_1+lambda_2G_2^++...+lambda_kG_k^+$

(9)

(i)若P为列半酉阵($Q^HQ=I$),则$P^+=P^H$

(ii)若P为列半酉阵($QQ^H=I$),则$P^+=P^H$

(iii)$(A^H)^+=(A^+)^H$

(10)(分块矩阵)

[A = left[ {egin{array}{*{20}{c}}
B&0\
0&D
end{array}} ight] Rightarrow {A^ + } = left[ {egin{array}{*{20}{c}}
{{B^ + }}&0\
0&{{D^ + }}
end{array}} ight]]

证明:

证明条件(1)

[A{A^ + }A = left[ {egin{array}{*{20}{c}}
B&0\
0&D
end{array}} ight]left[ {egin{array}{*{20}{c}}
{{B^ + }}&0\
0&{{D^ + }}
end{array}} ight]left[ {egin{array}{*{20}{c}}
B&0\
0&D
end{array}} ight] = left[ {egin{array}{*{20}{c}}
{B{B^ + }B}&0\
0&{D{D^ + }D}
end{array}} ight] = left[ {egin{array}{*{20}{c}}
B&0\
0&D
end{array}} ight]]

证明条件(2)

[{A^ + }A{A^ + } = left[ {egin{array}{*{20}{c}}
{{B^ + }}&0\
0&{{D^ + }}
end{array}} ight]left[ {egin{array}{*{20}{c}}
B&0\
0&D
end{array}} ight]left[ {egin{array}{*{20}{c}}
{{B^ + }}&0\
0&{{D^ + }}
end{array}} ight] = left[ {egin{array}{*{20}{c}}
{{B^{ m{ + }}}B{B^{ m{ + }}}}&0\
0&{{D^ + }D{D^ + }}
end{array}} ight] = left[ {egin{array}{*{20}{c}}
{{B^ + }}&0\
0&{{D^ + }}
end{array}} ight]]

证明条件(3):

[{(A{A^{ m{ + }}})^H} = {left[ {egin{array}{*{20}{c}}
{{B^{ m{ + }}}B}&0\
0&{{D^{ m{ + }}}D}
end{array}} ight]^H} = left[ {egin{array}{*{20}{c}}
{{{({B^{ m{ + }}}B)}^H}}&0\
0&{{{({D^{ m{ + }}}D)}^H}}
end{array}} ight] = left[ {egin{array}{*{20}{c}}
{{B^{ m{ + }}}B}&0\
0&{{D^{ m{ + }}}D}
end{array}} ight] = A{A^ + }]

证明条件(4):

[{({A^ + }A)^H} = {left[ {egin{array}{*{20}{c}}
{B{B^ + }}&0\
0&{D{D^ + }}
end{array}} ight]^H} = left[ {egin{array}{*{20}{c}}
{{{(B{B^ + })}^H}}&0\
0&{{{(D{D^ + })}^H}}
end{array}} ight] = left[ {egin{array}{*{20}{c}}
{B{B^ + }}&0\
0&{D{D^ + }}
end{array}} ight] = {A^ + }A]

原文地址:https://www.cnblogs.com/codeDog123/p/10217782.html