【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)

【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)

题面

洛谷

[求sum_{i=1}^nsum_{j=1}^nijgcd(i,j) ]

$ n<=10^9$

题解

很明显的把(gcd)提出来

[sum_{d=1}^ndsum_{i=1}^nsum_{j=1}^nij[gcd(i,j)==d] ]

习惯性的提出来

[sum_{d=1}^nd^3sum_{i=1}^{n/d}sum_{j=1}^{n/d}ij[gcd(i,j)==1] ]

后面这玩意很明显的来一发莫比乌斯反演

[sum_{d=1}^nd^3sum_{i=1}^{n/d}mu(i)i^2(1+2+...[frac{n}{id}])^2 ]

写起来好麻烦呀
我就设(sum(x)=1+2+3+...x)
(T=id)
提出来!

[sum_{T=1}^nsum(frac{n}{T})^2sum_{d|T}d^3frac{T}{d}^2mu(frac{T}{d}) ]

有些(d)可以约掉

[sum_{T=1}^nsum(frac{n}{T})^2T^2sum_{d|T}dmu(frac{T}{d}) ]

现在如果把后面给筛出来
可以(O(sqrt n))求啦
现在,问题来了

[T^2sum_{d|T}dmu(frac{T}{d})$$怎么算?? 考虑一个式子: $$(id*mu)(i)=varphi(i)]

也就是说,(mu)(id(x)=x)的狄利克雷卷积等于(varphi(i))
太神奇啦!!!

所以说,

[T^2sum_{d|T}dmu(frac{T}{d})=T^2varphi(T) ]

令$$f(i)=i^2varphi(i)$$

[S(n)=sum_{i=1}^nf(i) ]

杜教筛套路的式子拿出来

[g(1)S(n)=sum_{i=1}^n(g*f)(i)-sum_{i=2}^ng(i)S(frac{n}{i}) ]

还是发现有(varphi(i))的项
想到$$sum_{d|i}varphi(d)=i$$
所以令(g(x)=x^2)
所以

[S(n)=sum_{i=1}^n(g*f)(i)-sum_{i=2}^ng(i)S(frac{n}{i}) ]

[(g*f)(i)=sum_{d|i}f(d)g(frac{i}{d})=sum_{d|i}d^2varphi(d)frac{i}{d}^2 ]

[=i^2sum_{d|i}varphi(d)=i^3 ]

所以

[S(n)=sum_{i=1}^ni^3-sum_{i=2}^ni^2S(frac{n}{i}) ]

根据小学奥数的经验:
(1^3+2^3+....n^3=(1+2+....n)^2=sum(n)^2)

所以现在有:

[ans=sum_{T=1}^nsum(frac{n}{T})^2 T^2sum_{d|T}dmu(frac{T}{d}) ]

前面可以数论分块
后面用杜教筛可以再非线性时间里面求出前缀和
这道题目就搞定啦

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
int MAX=8000000;
#define MAXN 8000000
#define ll long long
inline ll read()
{
	ll x=0,t=1;char ch=getchar();
	while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
	if(ch=='-')t=-1,ch=getchar();
	while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
	return x*t;
}
ll MOD,n,inv6,inv2;
int pri[MAXN],tot;
ll phi[MAXN+10];
bool zs[MAXN+10];
map<ll,ll> M;
ll fpow(ll a,ll b)
{
	ll s=1;
	while(b){if(b&1)s=s*a%MOD;a=a*a%MOD;b>>=1;}
	return s;
}
void pre()
{
	zs[1]=true;phi[1]=1;
	for(int i=2;i<=MAX;++i)
	{
		if(!zs[i])pri[++tot]=i,phi[i]=i-1;
		for(int j=1;j<=tot&&i*pri[j]<=MAX;++j)
		{
			zs[i*pri[j]]=true;
			if(i%pri[j])phi[i*pri[j]]=1ll*phi[i]*phi[pri[j]]%MOD;
			else{phi[i*pri[j]]=1ll*phi[i]*pri[j]%MOD;break;}
		}
	}
	for(int i=1;i<=MAX;++i)phi[i]=(phi[i-1]+1ll*phi[i]*i%MOD*i%MOD)%MOD;
}
ll Sum(ll x){x%=MOD;return x*(x+1)%MOD*inv2%MOD;}
ll Sump(ll x){x%=MOD;return x*(x+1)%MOD*(x+x+1)%MOD*inv6%MOD;}
ll SF(ll x)
{
	if(x<=MAX)return phi[x];
	if(M[x])return M[x];
	ll ret=Sum(x);ret=ret*ret%MOD;
	for(ll i=2,j;i<=x;i=j+1)
	{
		j=x/(x/i);
		ll tt=(Sump(j)-Sump(i-1))%MOD;
		ret-=SF(x/i)*tt%MOD;
		ret%=MOD;
	}
	return M[x]=(ret+MOD)%MOD;
}
int main()
{
	MOD=read();n=read();
	MAX=min(1ll*MAX,n);
	inv2=fpow(2,MOD-2);
	inv6=fpow(6,MOD-2);
	pre();
	ll ans=0;
	for(ll i=1,j;i<=n;i=j+1)
	{
		j=n/(n/i);
		ll tt=Sum(n/i);tt=tt*tt%MOD;
		ll gg=(SF(j)-SF(i-1))%MOD;
		ans+=gg*tt%MOD;
		ans%=MOD;
	}
	printf("%lld
",(ans+MOD)%MOD);
	return 0;
}

原文地址:https://www.cnblogs.com/cjyyb/p/8298339.html