欧拉函数简要推导

[ exttt{Proposition} ]

定义欧拉函数 (varphi(n)) 为 " 在 (1 sim n) 中与 (n) 互质的数的个数 "。

(n)(m) 个质因子 (p_1, ...,p_m),则有 (varphi(n) = n prodlimits_{i=1}^m (1-frac{1}{p_i}))

[ exttt{Proof} ]

考虑构造 (m) 个集合 (A_1,...,A_m),其中 (A_i = {x in mathbb{Z} | 1 leq x leq n, x mod p_i = 0 })

显然,在 (1 sim n)(n) 不互质的数的集合为:

[igcuplimits_{i=1}^m A_i ]

(varphi(n)) 为:

[n - left| igcuplimits_{i=1}^m A_i ight| ]

由容斥原理,得:

[n - sumlimits_{1 leq i leq m}left| A_i ight| + sumlimits_{1 leq i < j leq m} left| A_i igcap A_j ight| - sumlimits_{1 leq i < j < k leq m} left| A_i igcap A_j igcap A_k ight| + ... + (-1)^m left| A_1 igcap ... igcap A_m ight| ]

即:

[n - sumlimits_{1 leq i leq m} frac{n}{p_i} + sumlimits_{1 leq i < j leq m} frac{n}{p_ip_j}- sumlimits_{1 leq i < j < k leq m} frac{n}{p_ip_jp_k} + ... + (-1)^m frac{n}{p_1p_2 ... p_m} ]

提取公因式 (n) 得:

[n imes(1 - sumlimits_{1 leq i leq m} frac{1}{p_i} + sumlimits_{1 leq i < j leq m} frac{1}{p_ip_j}- sumlimits_{1 leq i < j < k leq m} frac{1}{p_ip_jp_k} + ... + (-1)^m frac{1}{p_1p_2 ... p_m}) ]

通分,得:

[n imes (frac{p_1p_2 ... p_m}{p_1p_2 ... p_m} - ... + (-1)^{m - 1}sumlimits_{1 leq i leq m} frac{p_i}{p_1p_2 ... p_m} + (-1)^m frac{1}{p_1p_2 ... p_m} ) ]

[n imes frac{left( p_1p_2 ... p_m ight) - ... + (-1)^{m - 1}left( sumlimits_{1 leq i leq m} p_i ight) + (-1)^m}{p_1p_2 ... p_m} ]

在分子中提取公因式 (p_1),与未包含 (p_1) 的项结合,得:

[n imes frac{left( p_1 - 1 ight)left(- left(p_2 ... p_m ight) + ... + (-1)^{m - 2}left( sumlimits_{2 leq i leq m} p_i ight) + left( -1 ight)^{m - 1} ight)}{p_1p_2 ... p_m} ]

在分子中依次提取 (p2, ...,p_m),得:

[n imes frac{(p_1 - 1)(p_2 - 1) ... (p_m - 1)}{p_1p_2 ... p_m} ]

即:

[n imes frac{p_1 - 1}{p_1} imes frac{p_2 - 1}{p_2} imes ... imes frac{p_m - 1}{p_m} ]

[n prodlimits_{i=1}^m (1-frac{1}{p_i}) ]

证毕。

原文地址:https://www.cnblogs.com/cjtcalc/p/12891784.html