基础高等数学

( ext{Some Definitions})

Gamma函数

(Gamma(x)=int_0^{+infty}t^{x-1}e^{-t}mathrm{d}tqquad(x>0))

性质:
(Gamma(x+1)=xGamma(x))
(forall xin(0,1),Gamma(x)Gamma(1-x)=frac{pi}{sinpi x})
(Gamma(x+1)simsqrt{2pi x}(frac xe)^x)

Betta函数

(mathrm B(x,y)=int_0^1t^{x-1}(1-t)^{y-1}mathrm d tquad(operatorname{Re}(x),operatorname{Re}(y)>0))

性质:
(mathrm B(x,y)=mathrm B(y,x))
(mathrm B(x,y)=frac{Gamma(x)Gamma(y)}{Gamma(x+y)}=frac{(x-1)!(y-1)!}{(x+y-1)!})
(mathrm B(x+1,y)=frac x{x+y}mathrm B(x,y))
(mathrm B(x,y+1)=frac y{x+y}mathrm B(x,y))

差商

给定(n+1)个点((x_0,y_0),cdots,(x_n,y_n)),前差商如下定义:
([y_i]=y_i,[y_i,cdots,y_j]=frac{[y_{i+1},cdots,y_j]-[y_i,cdots,y_{j-1}]}{x_j-x_i})
(y_i=f(x_i)),那么([y_i,cdots,y_j])也记做(f[x_i,cdots,x_j])
此时差商还有一个等价的定义:(f[x_0,cdots,x_n]=sumlimits_{i=0}^nfrac{f(x_i)}{prodlimits_{j e i}(x_i-x_j)})

性质:
((f+g)[x_0,cdots,x_n]=f[x_0,cdots,x_n]+g[x_0,cdots,x_n])
((lambdacdot f)[x_0,cdots,x_n]=lambdacdot f[x_0,cdots,x_n])
(sigma:{0,cdots,n} ightarrow{0,cdots,n})是一个排列,则(f[x_0,cdots,x_n]=f[x_{sigma(0)},cdots,x_{sigma(n)}])

Leibniz公式

((fcdot g)[x_0,cdots,x_n]=sumlimits_{i=0}^nf[x_0,cdots,x_i]g[x_i,cdots x_n])

Taylor展开

(f[x_0,cdots,x_n]=sumlimits_{i=0}^{+infty}frac{f^{(i)}(0)}{i!}p_i[x_0,cdots,x_n])
其中(p_i[x_0,cdots,x_n]=egin{cases}0&i<n\1&i=n\sumlimits_{ain{0,n}^{i-n}wedge a_1lecdotsle a_{i-n}}prodlimits_{j=1}^{i-n}x_{a_j}&i>nend{cases})

矩阵形式

(T_f(x_0,cdots,x_n))(简记为(T_fx))满足(T_fx_{i,j}=[ile j]f[x_i,cdots,x_j])
(U(x_0,cdots,x_n))(简记为(Ux))满足(Ux_{i,j}=[i=j]+prodlimits_{k=i}^{j-1}(x_j-x_k))
(T_{f+g}x=T_fx+T_gx)
(T_{fcdot g}x=T_fxcdot T_gx)
(Uxcdotoperatorname{diag}(f(x_0),cdots,f(x_n))=T_fxcdot Ux)

( ext{Some Theorems})

乘积求导公式

((prodlimits_{i=1}^nf_i)'=sumlimits_{i=1}^nf_i'prodlimits_{j e i}f_j=(prodlimits_{i=1}^nf_i)(sumlimits_{i=1}^nfrac{f_i'}{f_i}))

Leibniz公式

(uv^{(n)}=sumlimits_{i=0}^n{nchoose i}u^{(i)}v^{(n-i)})

Lagrange乘数法

给定(n)个变量(x_1,cdots,x_n),要求(f)在满足(g_1,cdots,g_m=0)的条件下的极值。

(h=f+sumlimits_{i=1}^mlambda_ig_i),则(f)在满足(g_1,cdots,g_m=0)的条件下取到极值的充要条件是( abla h(x_1,cdots,x_n,lambda_1,cdots,lambda_m)=mathbf0)

Wallis公式

(limlimits_{k oinfty}[frac{(2k)!!}{(2k-1)!!}]^2frac1{2k+1}=frac{pi}2)
(limlimits_{k oinfty}[frac{((2k)!!)^2}{(2k)!}]^2frac1{2k+1}=frac{pi}2)
(limlimits_{k oinfty}[frac{2^{2k}(k!)^2}{(2k)!}]^2frac1{2k+1}=frac{pi}2)
其中(n!!=egin{cases}prodlimits_{i=1}^{frac{n+1}2}(2i-1)&2 mid n\prodlimits_{i=1}^{frac n2}(2i)&2|nend{cases})

Stirling公式

(n!simsqrt{2npi}(frac ne)^n)
但是注意(limlimits_{n oinfty}[n!-sqrt{2npi}(frac ne)^n]=infty)

Newton级数

(f(x)=sumlimits_{k=0}^{+infty}{x-achoose k}Delta^kf(a))

Taylor级数

(f(x)=sumlimits_{n=0}^{+infty}frac{f^{(n)}(a)}{n!}(x-a)^n)

Euler等式(五边形数定理)

(prodlimits_{n=1}^{+infty}(1-x^n)=sumlimits_{k=-infty}^{+infty }(-1)^kx^frac{k(3k-1)}2)

( ext{Some Identities})

(frac1{(1-x)^{t+1}}=sumlimits_{i=0}^{+infty}{t+ichoose t}x^i)

Lagrange多项式

给定(n+1)个点((x_0,y_0),cdots,(x_n,y_n))
定义Lagrange基多项式为(ell_i(x)=prodlimits_{j e i}frac {x-x_j}{x_i-x_j})
那么Lagrange形式的插值多项式为(L(x)=sumlimits_{i=0}^ny_iell_i(x))

重心形式

(ell(x)=prodlimits_{i=0}^n(x-x_i)),那么有(ell_i(x)=frac{ell(x)}{(x-x_i)prodlimits_{j e i}(x_i-x_j)})
定义(w_i=frac1{prodlimits_{j e i}(x_j-x_i)}),那么有(L(x)=ell(x)sumlimits_{i=0}^nfrac{w_iy_i}{x-x_i})

Newton多项式

给定(n+1)个点((x_0,y_0),cdots,(x_n,y_n))
定义Newton基多项式为(n_0(x)=1,n_i(x)=prodlimits_{j=0}^{i-1}(x-x_j))
那么Newton形式的插值多项式为(N(x)=sumlimits_{i=0}^n[y_0,cdots,y_i]n_i(x))

原文地址:https://www.cnblogs.com/cjoierShiina-Mashiro/p/12120139.html