中国剩余定理及扩展中国剩余定理

TJOI2009 猜数字

HDU 1573 X问题



中国剩余定理CRT

中国剩余定理是用来求线性同于方程组的。

[egin{aligned} left { egin{matrix} x equiv c_1 (mod \,\,m_1 )\ x equiv c_2 (mod \,\,m_2 )\ ...\ x equiv c_n(mod \,\, m_n) end{matrix} ight. end{aligned} ]

中国剩余定理是这样来的。

我们先考虑如下几个方程组:

[egin{aligned}left { egin{matrix} x_1 equiv 1 (mod \,\,m_1 )\ x_1 equiv 0 (mod \,\,m_2 )\...\x_1 equiv 0(mod \,\, m_n)end{matrix} ight.,left { egin{matrix}x_2 equiv 0 (mod \,\,m_1 )\x_2 equiv 1 (mod \,\,m_2 )\...\x_2 equiv 0(mod \,\, m_n)end{matrix} ight.,left { egin{matrix}x_n equiv 0 (mod \,\,m_1 )\x_n equiv 0 (mod \,\,m_2 )\...\x_n equiv 1(mod \,\, m_n)end{matrix} ight.end{aligned} ]

那么,在(gcd(m1,m2,...,m_n))时,就显然有如下结论:

[egin{aligned} prod_{i eq 1} m_i x_1' & equiv 1(mod \,\, m_1)\ prod_{i eq 2} m_i x_2' & equiv 1(mod \,\, m_2)\ prod_{i eq n} m_i x_n' & equiv 1(mod \,\, m_n)\ end{aligned} ]

那么

[egin{aligned} x_1 & =x_1'prod_{i eq 1} m_i \ x_2 & =x_2'prod_{i eq 2} m_i \ x_n & =x_n'prod_{i eq n} m_i \ end{aligned} ]

然后最终的结果就是

[x=sum_{i=1}^nc_ix_i+kprod_{i=1}^nm_i ]

那么程序就比较好写啦。

TJOI2009 猜数字

#include <bits/stdc++.h>
#define LL long long
using namespace std;

LL n;
LL A[ 20 ], B[ 20 ];
LL M, Ans, T[ 20 ];

LL QM( LL x, LL y ) {
    LL Ans = 0;
    for( ; y; y >>= 1, x = x * 2 % M ) 
        if( y & 1 ) Ans = ( Ans + x ) % M;
    return Ans;
}

void Expower( LL a, LL b, LL &x, LL &y ) {
    if( b == 0 ) {
        x = 1; y = 0; return;
    }
    Expower( b, a % b, y, x );
    y -= a / b * x;
    return;
}

LL INV( LL a, LL b ) {
    LL x, y;
    Expower( a, b, x, y );
    if( x < 0 ) x += b;
    return x;
}

int main() {
    scanf( "%lld", &n );
    for( LL i = 1; i <= n; ++i ) scanf( "%lld", &A[ i ] );
    for( LL i = 1; i <= n; ++i ) scanf( "%lld", &B[ i ] );
    for( LL i = 1; i <= n; ++i ) A[ i ] %= B[ i ];
    M = 1;
    for( LL i = 1; i <= n; ++i ) M *= B[ i ];
    for( LL i = 1; i <= n; ++i ) T[ i ] = QM( INV( M / B[ i ], B[ i ] ), ( M / B[ i ] ) );
    Ans = 0;
    for( LL i = 1; i <= n; ++i ) Ans = ( Ans + QM( A[ i ], T[ i ] ) ) % M;
    printf( "%lld
", Ans );
    return 0;
}

扩展中国剩余定理ExCRT

刚才提到,中国剩余定理适用于模数互质的时候。要是模数不互质,那么就需要用到扩展中国剩余定理。

ExCRT是这样工作的:

我们先观察两个线性同余方程组:

[egin{aligned} x & equiv c_1 (mod\,\,m_1)\ x & equiv c_2 (mod\,\,m_2) end{aligned} ]

我们将它写成这种形式:

[egin{aligned} x & =c_1+k_1m_1 \ x & =c_2+k_2m_2 end{aligned} ]

联立后得到:

[egin{aligned} c_1+k_1m_1 &=c_2+k_2m_2\ Rightarrow k_1m_1-k_2m_2&= c_2-c_1 end{aligned} ]

由裴蜀定理得,方程有解的充要条件是(gcd(m_1,m_2)|(c_2-c_1))

这样的话,我们又可以得到:

[egin{aligned} &k_1frac{m_1}{gcd(m_1,m_2)}-k_2frac{m_2}{gcd(m_1,m_2)}=frac{c_2-c_1}{gcd(m_1,m_2)}\ Rightarrow &k_1frac{m_1}{gcd(m_1,m_2)}equiv frac{c_2-c_1}{gcd(m_1,m_2)}\,\,(mod\,\, frac{m_2}{gcd(m_1,m_2)})\ Rightarrow & k_1equivfrac{c_2-c_1}{gcd(m_1,m_2)} imes(frac{m_1}{gcd(m_1,m_2)})^{-1} \,\,(mod\,\,frac{m_2}{gcd(m_1,m_2)}) end{aligned} ]

然后将(k_1)代回(x=c_1+k_1m_1)中,得到

[xequivfrac{c_2-c_1}{gcd(m_1,m_2)} imes (frac{m_1}{gcd(m_1,m_2)})^{-1} imes m_1+c_2\,\,(mod \,\, frac{m_2}{gcd(m_1,m_2)}) ]

我们又得到了一个形如(xequiv c \,\,(mod\,\,m))的线性同余方程。所以迭代求解即可。

HDU 1573 X问题

#include <bits/stdc++.h>
#define LL long long
using namespace std;

const int Maxm = 20;

void Work();

int main() {
	int TestCases;
	scanf( "%d", &TestCases );
	for( ; TestCases; --TestCases ) Work();
	return 0;
}

int N, M, A[ Maxm ], B[ Maxm ];
struct equation {
	LL A, B;
};
equation T1, T2;

LL GCD( LL x, LL y ) {
	LL m = x % y;
	while( m ) {
		x = y; y = m; m = x % y;
	}
	return y;
}

void ExGCD( LL a, LL b, LL &x, LL &y ) {
	if( b == 0 ) {
		x = 1; y = 0; return;
	}
	ExGCD( b, a % b, y, x );
	y -= a / b * x;
	return;
}

LL Inv( LL a, LL b ) {
	LL x, y;
	ExGCD( a, b, x, y );
	if( x < 0 ) x += b;
	return x;
}

equation ExCRT( equation X, equation Y ) {
	LL Gcd = GCD( X.A, Y.A );
	if( ( Y.B - X.B ) % Gcd ) return ( equation ) { 0, 0 };
	LL A = X.A * Y.A / Gcd;
	LL B = Inv( X.A / Gcd, Y.A / Gcd ) * ( Y.B - X.B ) / Gcd % ( Y.A / Gcd ) * X.A + X.B;
	return ( equation ) { A, B };
}

void Work() {
	scanf( "%d%d", &N, &M );
	for( int i = 1; i <= M; ++i ) scanf( "%d", &A[ i ] );
	for( int i = 1; i <= M; ++i ) scanf( "%d", &B[ i ] );
	T1 = ( equation ) { A[ 1 ], B[ 1 ] };
	for( int i = 2; i <= M; ++i ) {
		T2 = ( equation ) { A[ i ], B[ i ] };
		T1 = ExCRT( T1, T2 );
		if( !T1.A ) {
			printf( "0
" );
			return;
		}
	}
	if( T1.B < 0 ) T1.B += T1.A;
	if( T1.B > N ) {
		printf( "0
" );
		return;
	}
	if( T1.B ) printf( "%d
", ( int ) ( ( N - T1.B ) / T1.A + 1 ) ); 
	else printf( "%d
", ( int ) ( N / T1.A ) );
	return;
}
原文地址:https://www.cnblogs.com/chy-2003/p/11458559.html