Modular_exponentiation模幂运算

https://en.wikipedia.org/wiki/Modular_exponentiation

蒙哥马利(Montgomery)幂模运算是快速计算a^b%k的一种算法,是RSA加密算法的核心之一。

蒙哥马利模乘的优点在于减少了取模的次数(在大数的条件下)以及简化了除法的复杂度(在2的k次幂的进制下除法仅需要进行左移操作)。模幂运算是RSA 的核心算法,最直接地决定了RSA 算法的性能。
针对快速模幂运算这一课题,西方现代数学家提出了大量的解决方案,通常都是先将幂模运算转化为乘模运算。
 

Modular exponentiation is a type of exponentiation取幂,求幂;乘方 performed over a modulus模数,系数.

It is useful in computer science, especially in the field of public-key cryptography.

The operation of modular exponentiation calculates the remainder when an integer b 底数(the base) raised to the eth power (the exponent指数), be, is divided by a positive integer m (the modulus).

In symbols, given base b, exponent e, and modulus m, the modular exponentiation c is: c ≡ be (mod m).        //c=b的e次方 %m

For example, given b = 5, e = 3 and m = 13, the solution c = 8 is the remainder of dividing 53 = 125 by 13.      //c=5^3%13=125%13   因为125=13*9+8 ,所以125对13求余,结果是8

Given integers b and e, and a positive integer m, a unique solution c exists with the property 0 ≤ c < m.

Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is:

c ≡ be ≡ de mod m where e < 0 and b ⋅ d ≡ 1 mod m.

Modular exponentiation similar to the one described above are considered easy to compute, even when the numbers involved are enormous巨大的.

On the other hand, computing the discrete logarithm离散对数 – that is, the task of finding the exponente when given bc, and m – is believed to be difficult.

This one-way function behavior makes modular exponentiation a candidate for use in cryptographic algorithms.

原文地址:https://www.cnblogs.com/chucklu/p/5309297.html