HTTP request smuggling

HTTP request smuggling

             In this section, we'll explain HTTP request smuggling attacks and describe how common request smuggling vulnerabilities can arise.

What is HTTP request smuggling?

HTTP request smuggling is a technique for interfering with the way a web site processes sequences of HTTP requests that are received from one or more users. Request smuggling vulnerabilities are often critical in nature, allowing an attacker to bypass security controls, gain unauthorized access to sensitive data, and directly compromise other application users.         

Note

HTTP request smuggling was first documented in 2005, and recently repopularized by PortSwigger's research on the topic.             

What happens in an HTTP request smuggling attack?

Today's web applications frequently employ chains of HTTP servers between users and the ultimate application logic. Users send requests to a front-end server (sometimes called a load balancer or reverse proxy) and this server forwards requests to one or more back-end servers. This type of architecture is increasingly common, and in some cases unavoidable, in modern cloud-based applications.

When the front-end server forwards HTTP requests to a back-end server, it typically sends several requests over the same back-end network connection, because this is much more efficient and performant. The protocol is very simple: HTTP requests are sent one after another, and the receiving server parses the HTTP request headers to determine where one request ends and the next one begins:         

 In this situation, it is crucial that the front-end and back-end systems agree about the boundaries between requests. Otherwise, an attacker might be able to send an ambiguous request that gets interpreted differently by the front-end and back-end systems:

             Here, the attacker causes part of their front-end request to be interpreted by the back-end server as the start of the next request. It is effectively prepended to the next request, and so can interfere with the way the application processes that request. This is a request smuggling attack, and it can have devastating results.

How do HTTP request smuggling vulnerabilities arise?

Most HTTP request smuggling vulnerabilities arise because the HTTP specification provides two different ways to specify where a request ends: the Content-Length header and the Transfer-Encoding header.

The Content-Length header is straightforward: it specifies the length of the message body in bytes. For example:

POST /search HTTP/1.1
Host: normal-website.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 11

q=smuggling

The Transfer-Encoding header can be used to specify that the message body uses chunked encoding. This means that the message body contains one or more chunks of data. Each chunk consists of the chunk size in bytes (expressed in hexadecimal), followed by a newline, followed by the chunk contents. The message is terminated with a chunk of size zero. For example:

POST /search HTTP/1.1
Host: normal-website.com
Content-Type: application/x-www-form-urlencoded
Transfer-Encoding: chunked

b
q=smuggling
0

Note

Many security testers are unaware that chunked encoding can be used in HTTP requests, for two reasons:

  • Burp Suite automatically unpacks chunked encoding to make messages easier to view and edit.
  • Browsers do not normally use chunked encoding in requests, and it is normally seen only in server responses.

Since the HTTP specification provides two different methods for specifying the length of HTTP messages, it is possible for a single message to use both methods at once, such that they conflict with each other. The HTTP specification attempts to prevent this problem by stating that if both the Content-Length and Transfer-Encoding headers are present, then the Content-Length header should be ignored. This might be sufficient to avoid ambiguity when only a single server is in play, but not when two or more servers are chained together. In this situation, problems can arise for two reasons:

  • Some servers do not support the Transfer-Encoding header in requests.
  • Some servers that do support the Transfer-Encoding header can be induced not to process it if the header is obfuscated in some way.

If the front-end and back-end servers behave differently in relation to the (possibly obfuscated) Transfer-Encoding header, then they might disagree about the boundaries between successive requests, leading to request smuggling vulnerabilities.         

How to perform an HTTP request smuggling attack

Request smuggling attacks involve placing both the Content-Length header and the Transfer-Encoding header into a single HTTP request and manipulating these so that the front-end and back-end servers process the request differently. The exact way in which this is done depends on the behavior of the two servers:

  • CL.TE: the front-end server uses the Content-Length header and the back-end server uses the Transfer-Encoding header.
  • TE.CL: the front-end server uses the Transfer-Encoding header and the back-end server uses the Content-Length header.
  • TE.TE: the front-end and back-end servers both support the Transfer-Encoding header, but one of the servers can be induced not to process it by obfuscating the header in some way.             

CL.TE vulnerabilities

Here, the front-end server uses the Content-Length header and the back-end server uses the Transfer-Encoding header. We can perform a simple HTTP request smuggling attack as follows:

POST / HTTP/1.1
Host: vulnerable-website.com
Content-Length: 13
Transfer-Encoding: chunked

0

SMUGGLED

The front-end server processes the Content-Length header and determines that the request body is 13 bytes long, up to the end of SMUGGLED. This request is forwarded on to the back-end server.

The back-end server processes the Transfer-Encoding header, and so treats the message body as using chunked encoding. It processes the first chunk, which is stated to be zero length, and so is treated as terminating the request. The following bytes, SMUGGLED, are left unprocessed, and the back-end server will treat these as being the start of the next request in the sequence.

TE.CL vulnerabilities

Here, the front-end server uses the Transfer-Encoding header and the back-end server uses the Content-Length header. We can perform a simple HTTP request smuggling attack as follows:

POST / HTTP/1.1
Host: vulnerable-website.com
Content-Length: 3
Transfer-Encoding: chunked

8
SMUGGLED
0

Note

To send this request using Burp Repeater, you will first need to go to the Repeater menu and ensure that the "Update Content-Length" option is unchecked.

You need to include the trailing sequence following the final 0.

The front-end server processes the Transfer-Encoding header, and so treats the message body as using chunked encoding. It processes the first chunk, which is stated to be 8 bytes long, up to the start of the line following SMUGGLED. It processes the second chunk, which is stated to be zero length, and so is treated as terminating the request. This request is forwarded on to the back-end server.

The back-end server processes the Content-Length header and determines that the request body is 3 bytes long, up to the start of the line following 8. The following bytes, starting with SMUGGLED, are left unprocessed, and the back-end server will treat these as being the start of the next request in the sequence.

TE.TE behavior: obfuscating the TE header

Here, the front-end and back-end servers both support the Transfer-Encoding header, but one of the servers can be induced not to process it by obfuscating the header in some way.

There are potentially endless ways to obfuscate the Transfer-Encoding header. For example:

Transfer-Encoding: xchunked

Transfer-Encoding : chunked

Transfer-Encoding: chunked
Transfer-Encoding: x

Transfer-Encoding:[tab]chunked

[space]Transfer-Encoding: chunked

X: X[ ]Transfer-Encoding: chunked

Transfer-Encoding
: chunked

Each of these techniques involves a subtle departure from the HTTP specification. Real-world code that implements a protocol specification rarely adheres to it with absolute precision, and it is common for different implementations to tolerate different variations from the specification. To uncover a TE.TE vulnerability, it is necessary to find some variation of the Transfer-Encoding header such that only one of the front-end or back-end servers processes it, while the other server ignores it.

Depending on whether it is the front-end or the back-end server that can be induced not to process the obfuscated Transfer-Encoding header, the remainder of the attack will take the same form as for the CL.TE or TE.CL vulnerabilities already described.

How to prevent HTTP request smuggling vulnerabilities

HTTP request smuggling vulnerabilities arise in situations where a front-end server forwards multiple requests to a back-end server over the same network connection, and the protocol used for the back-end connections carries the risk that the two servers disagree about the boundaries between requests. Some generic ways to prevent HTTP request smuggling vulnerabilities arising are as follows:

  • Disable reuse of back-end connections, so that each back-end request is sent over a separate network connection.
  • Use HTTP/2 for back-end connections, as this protocol prevents ambiguity about the boundaries between requests.
  • Use exactly the same web server software for the front-end and back-end servers, so that they agree about the boundaries between requests.

In some cases, vulnerabilities can be avoided by making the front-end server normalize ambiguous requests or making the back-end server reject ambiguous requests and close the network connection. However, these approaches are potentially more error-prone than the generic mitigations identified above.

 https://www.cnblogs.com/mrhonest/p/13566091.html

原文地址:https://www.cnblogs.com/chucklu/p/14292491.html