[LeetCode]题解:005-Longest Palindromic Substring优化

 

题目来源和题意分析:

      详情请看我的博客:http://www.cnblogs.com/chruny/p/4791078.html


题目思路:

      我上一篇博客解决这个问题的时间复杂度是最坏情况是(O(n^2))。但是昨天我网上看了别人的做法,其中有一个Manacher算法,其算法复杂度是(O(n))。所以我根据Manacher算法实现了最长回文子字符串。

      下面我介绍Manacher算法的原理,这原理博文转载于http://blog.csdn.net/dyx404514/article/details/42061017

首先,Manacher算法提供了一种巧妙地办法,将长度为奇数的回文串和长度为偶数的回文串一起考虑,具体做法是,在原字符串的每个相邻两个字符中间插入一个分隔符,同时在首尾也要添加一个分隔符,分隔符的要求是不在原串中出现,一般情况下可以用#号。下面举一个例子:

(1)Len数组简介与性质

Manacher算法用一个辅助数组Len[i]表示以字符T[i]为中心的最长回文字串的最右字符到T[i]的长度,比如以T[i]为中心的最长回文字串是T[l,r],那么Len[i]=r-i+1。

对于上面的例子,可以得出Len[i]数组为:

Len数组有一个性质,那就是Len[i]-1就是该回文子串在原字符串S中的长度,至于证明,首先在转换得到的字符串T中,所有的回文字串的长度都为奇数,那么对于以T[i]为中心的最长回文字串,其长度就为2*Len[i]-1,经过观察可知,T中所有的回文子串,其中分隔符的数量一定比其他字符的数量多1,也就是有Len[i]个分隔符,剩下Len[i]-1个字符来自原字符串,所以该回文串在原字符串中的长度就为Len[i]-1。

有了这个性质,那么原问题就转化为求所有的Len[i]。下面介绍如何在线性时间复杂度内求出所有的Len。

(2)Len数组的计算

首先从左往右依次计算Len[i],当计算Len[i]时,Len[j](0<=j<i)已经计算完毕。设P为之前计算中最长回文子串的右端点的最大值,并且设取得这个最大值的位置为po,分两种情况:

第一种情况:i<=P

那么找到i相对于po的对称位置,设为j,那么如果Len[j]<P-i,如下图:

那么说明以j为中心的回文串一定在以po为中心的回文串的内部,且j和i关于位置po对称,由回文串的定义可知,一个回文串反过来还是一个回文串,所以以i为中心的回文串的长度至少和以j为中心的回文串一样,即Len[i]>=Len[j]。因为Len[j]<P-i,所以说i+Len[j]<P。由对称性可知Len[i]=Len[j]。

如果Len[j]>=P-i,由对称性,说明以i为中心的回文串可能会延伸到P之外,而大于P的部分我们还没有进行匹配,所以要从P+1位置开始一个一个进行匹配,直到发生失配,从而更新P和对应的po以及Len[i]。

第二种情况: i>P

如果i比P还要大,说明对于中点为i的回文串还一点都没有匹配,这个时候,就只能老老实实地一个一个匹配了,匹配完成后要更新P的位置和对应的po以及Len[i]。

2.时间复杂度分析

Manacher算法的时间复杂度分析和Z算法类似,因为算法只有遇到还没有匹配的位置时才进行匹配,已经匹配过的位置不再进行匹配,所以对于T字符串中的每一个位置,只进行一次匹配,所以Manacher算法的总体时间复杂度为O(n),其中n为T字符串的长度,由于T的长度事实上是S的两倍,所以时间复杂度依然是线性的。


 

代码实现(python):

class Solution(object):
    def longestPalindrome(self, s):
        """
        :type s: str
        :rtype: str
        """
        size = len(s)
        if size == 1:
            return s
        newS = ''
        for str in s:
            newS += '#'
            newS += str
        newS += '#'
        maxnum = 0
        maxindex = 0
        mark = [1]
        i = 0 # the rightest index of palindrome
        j = 0 # the center while get i
        k = 1
        newSize = len(newS)
        while k < newSize:
            if i == newSize - 1:
                break
            if k < i and mark[2*j - k] < i - k:
                mark.append(mark[2*j - k])
            else:
                if k >= i:
                    t = 1
                else:
                    t = i - k + 1
                while k - t >= 0 and k + t < newSize:
                    if newS[k - t] != newS[k + t]:
                        break
                    t += 1
                j = k
                i = k + t - 1
                if(maxnum < i - j + 1):
                    maxnum = i - j + 1
                    maxindex = j
                mark.append(i - j + 1)
            k += 1
        return s[(maxindex + 1 - maxnum) // 2:(maxindex + maxnum) // 2]
View Code

和上一篇博客的代码提交时间比较:

1.(O(n^2))的时间:

image

2.(O(n))的时间:

image

我们可以看到,他们的时间其实相差不是很大。原因是我在用(O(n^2))的时候做了一些优化处理,并且O(n)算法增加了字符的长度。


转载请注明出处:http://www.cnblogs.com/chruny/p/4797704.html 

原文地址:https://www.cnblogs.com/chruny/p/4797704.html