OSI七层模型

一、OSI七层协议

OSI是Open System Interconnection的缩写,意为开放式系统互联。国际标准化组织(ISO)制定了OSI模型,该模型定义了不同计算机互联的标准,是设计和描述计算机网络通信的基本框架。

OSI七层协议分别为应用层,表示层,会话层,传输层,网络层,数据链路层,物理层,一般情况我们把上三层统一称为应用层。

OSI七层模型 功能 对应的网络协议 TCP/IP四层概念模型
应用层 文件传输,文件管理,电子邮件的信息处理——apdu HTTP、TFTP, FTP, NFS, WAIS、SMTP 应用层
表示层 确保一个系统的应用层发送的消息可以被另一个系统的应用层读取,编码转换,数据解析,管理数据的解密和加密,最小单位——ppdu Telnet, Rlogin, SNMP, Gopher
会话层 负责在网络中的两节点建立,维持和终止通信,在一层协议中,可以解决节点连接的协调和管理问题。包括通信连接的建立,保持会话过程通信连接的畅通,两节点之间的对话,决定通信是否被终端一斤通信终端是决定从何处重新发送,最小单位——spdu SMTP, DNS
传输层 定义一些传输数据的协议和端口。传输协议同时进行流量控制,或是根据接收方接收数据的快慢程度,规定适当的发送速率,解决传输效率及能力的问题——tpdu TCP, UDP 传输层
网络层 控制子网的运行,如逻辑编址,分组传输,路由选择最小单位——分组(包)报文 IP, ICMP, ARP, RARP, AKP, UUCP 网络层
数据链路层 主要是对物理层传输的比特流包装,检测保证数据传输的可靠性,将物理层接收的数据进行MAC(媒体访问控制)地址的封装和解封装,也可以简单的理解为物理寻址。交换机就处在这一层,最小的传输单位——帧 FDDI, Ethernet, Arpanet, PDN, SLIP, PPP,STP。HDLC,SDLC,帧中继 数据链路层
物理层 定义物理设备的标准,主要对物理连接方式,电气特性,机械特性等制定统一标准,传输比特流,因此最小的传输单位——位(比特流) IEEE 802.1A, IEEE 802.2到IEEE 802.

OSI七层协议数据传输的封包与解包过程:

img

1.1物理层

建立、维护、断开物理连接

负责发送电信号:主要是基于电器特性发送高低电压(电信号),高电压对应数字1,低电压对应数字0

1.2数据链路层

数据链路层由来:单纯的电信号0和1没有任何意义,必须规定电信号多少位一组,每组什么意思

数据链路层的功能:定义了电信号的分组方式

以太网协议:

早期的时候各个公司都有自己的分组方式,后来形成了统一的标准,即以太网协议ethernet

ethernet规定

  • 一组电信号构成一个数据包,叫做‘帧’
  • 每一数据帧分成:报头head和数据data两部分
head data

head包含:(固定18个字节)

  • 发送者/源地址,6个字节
  • 接收者/目标地址,6个字节
  • 数据类型,6个字节

data包含:(最短46字节,最长1500字节)

  • 数据包的具体内容

head长度+data长度=最短64字节,最长1518字节,超过最大限制就分片发送

mac地址:

head中包含的源和目标地址由来:ethernet规定接入internet的设备都必须具备网卡,发送端和接收端的地址便是指网卡的地址,即mac地址

mac地址:每块网卡出厂时都被烧制上一个世界唯一的mac地址,长度为48位2进制,通常由12位16进制数表示(前六位是厂商编号,后六位是流水线号)

广播(局域网内通信):

有了mac地址,同一网络内的两台主机就可以通信了(一台主机通过arp协议获取另外一台主机的mac地址)

ethernet采用最原始的方式,广播的方式进行通信,即在一个局域网内,所有机器都会收到请求,但是只有一个会响应,这个响应的机器就会把自己的mac地址发给路由器,然后路由器把目标机器的mac地址写上,再发给该机器

arp协议:

arp协议功能:广播的方式发送数据包,获取目标主机的mac地址

arp协议的的工作过程例子

举一个简单的例子来看看ARP的功能。假如我们的主机(192.168.1.11)需要向开发板(192.168.1.37)发送一个IP
数据包,当发送数据时,主机会在自己的ARP缓存表中寻找是否有目标IP地址。如果找到了,也就知道了目标MAC地址为
(04-02-35-00-00-01),此时,主机直接把目标MAC地址写入以太网首部发送就可以了;如果在ARP缓存表中没有找
到相对应的IP地址,此时比较不幸,我们的数据需要被延迟发送,随后主机会先在网络上发送一个广播(ARP请求,以太
网目的地址为FF-FF-FF-FF-FF-FF),广播的ARP请求表示同一网段内所有主机将会收到这样一条信息:
“192.168.1.37的MAC地址是什么?请回答”。网络IP地址为192.168.1.37(开发板)的主机接收到这个帧后,它有
义务做出这样的回答(ARP应答):“192.168.1.37的MAC地址是(04-02-35-00-00-01)”。这样,主机就知道了开
发板的MAC地址,先前被延时的数据包就可以被发送了,此外,主机将这个地址对保存在缓存表中,以便后续数据包发送
时使用。

ARP协议的核心就是对ARP缓存表的操作。发送数据包时,查找缓存表以得到目的MAC地址,此外,ARP还需要不断地处理
ARP请求包和ARP应答包,以保证缓存表中各个表项的有效性。ARP的实质就是对缓存表的建立、更新、查询等操作。

1.3网络层

网络层由来:有了ethernet、mac地址、广播的发送方式,世界上的计算机就可以彼此通信了,问题是世界范围的互联网是由一个个彼此隔离的小的局域网组成的,那么如果所有的通信都采用以太网的广播方式,那么一台机器发送的包全世界都会收到,这就不仅仅是效率低的问题了,因为不止一台机器在发出请求,会有无数的数据冲击主机!

结论:必须找出一种方法来区分哪些计算机属于同一广播域,哪些不是,如果是就采用广播的方式发送,如果不是,

就采用路由的方式(向不同广播域/子网分发数据包)

网络层功能:引入一套新的地址用来区分不同的广播域/子网,这套地址即网络地址

IP地址:标识一台计算机在哪个子网内
ARP:把IP解析成MAC地址,用来在子网内部通信
IP + MAC: 确定世界上唯一一台计算机。
IP + PORT + MAC:确定世界上唯一一个基于网络通信的软件。  # port是端口,表示一个软件在该计算器上的编号

IP协议:

  • 规定网络地址的协议叫ip协议,它定义的地址称之为ip地址,广泛采用的v4版本即ipv4,它规定网络地址由32位2进制表示
  • 范围0.0.0.0-255.255.255.255
  • 一个ip地址通常写成四段十进制数,例:172.16.10.1

ip地址分成两部分:

  • 网络部分:标识子网
  • 主机部分:标识主机

注意:单纯的ip地址段只是标识了ip地址的种类,从网络部分或主机部分都无法辨识一个ip所处的子网

例:172.16.10.1与172.16.10.2并不能确定二者处于同一子网

子网掩码

所谓”子网掩码”,就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.10.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。

知道”子网掩码”,我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。

总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。

1.4传输层

传输层的由来:网络层的ip帮我们区分子网,以太网层的mac帮我们找到主机,然后大家使用的都是应用程序,你的电脑上可能同时开启qq,暴风影音,等多个应用程序,

那么我们通过ip和mac找到了一台特定的主机,如何标识这台主机上的应用程序,答案就是端口,端口即应用程序与网卡关联的编号。

传输层功能:建立端口到端口的通信

补充:端口范围0-65535,0-1023为系统占用端口

tcp协议:

可靠传输,TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

以太网头 ip 头 tcp头 数据

udp协议:

不可靠传输,”报头”部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

以太网头 ip头 udp头 数据

1.5应用层

应用层由来:用户使用的都是应用程序,均工作于应用层,互联网是开发的,大家都可以开发自己的应用程序,数据多种多样,必须规定好数据的组织形式

应用层功能:规定应用程序的数据格式。

例:TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了”应用层”。

原文地址:https://www.cnblogs.com/chiyun/p/14066342.html