初学MillerRabin素数测试

前言

(MillerRabin)素数测试是一种很实用的素数判定方法。

它只针对单个数字进行判定,因而可以对较大的乃至于(long long)范围内的数进行判定,而且速度也很快,是个十分优秀的算法。

前置定理

  • 费马小定理(a^{p-1}equiv1(mod p))(详见此博客:费马小定理
  • 二次探测定理:若(p)为奇素数且(x^2equiv1(mod p)),则(xequiv1(mod p))(xequiv p-1(mod p))

大致思路

假设我们要验证(x)是否为素数,则我们应先找一个质数(p)来对其进行测试((p)可以选取多个依次进行测试,只要有一个不满足就可以确定其不是质数)。

首先,我们先判断如果(x=p),则(x)必为质数(因为(p)为质数)。如果(x)(p)的倍数,则(x)必为合数。

然后,由于费马小定理,我们先测试(p^{x-1}\%x)是否等于(1),如果不是,则它必然不是质数(这一步也叫作费马测试)。

否则,我们根据二次探测定理,先用一个(k)记录下(x-1),然后只要(k)为偶数就持续操作:

  • 先将(k)除以(2),然后用一个(t)记录下(p^k\%x)的值。
  • 如果(t)不等于(1)且不等于(p-1),则根据二次探测定理,(x)非质数。
  • 如果(t=p-1),则无法继续套用二次探测定理,因此直接返回(true)

如果一直操作到(k)为奇数仍然无法确定(x)非质数,就返回(true)

这一过程应该还是比较容易理解的。

代码

class MillerRabin//MR测试
{
    private:
        #define Pcnt 10
        Con int P[Pcnt]={2,3,5,7,11,13,19,61,2333,24251};//用于测试的质数
        I int Qpow(RI x,RI y,CI X) {RI t=1;W(y) y&1&&(t=1LL*t*x%X),x=1LL*x*x%X,y>>=1;return t;}//快速幂
        I bool Check(CI x,CI p)//测试
        {
            if(!(x%p)||Qpow(p%x,x-1,x)^1) return false;//判断x是否为p的倍数,然后费马测试
            RI k=x-1,t;W(!(k&1))//持续操作直至k为奇数
            {
                if((t=Qpow(p%x,k>>=1,x))^1&&t^(x-1)) return false;//如果p^k不是1也不是-1,说明x不是质数
                if(!(t^(x-1))) return true;//如果p^k已为-1,无法用二次探测定理,因此返回true
            }return true;
        }
    public:
        I bool IsPrime(CI x)//判断一个数是否为质数
        {
            if(x<2) return false;
            for(RI i=0;i^Pcnt;++i) {if(!(x^P[i])) return true;if(!Check(x,P[i])) return false;}//枚举质数进行测试
            return true;
        }
}MR;
原文地址:https://www.cnblogs.com/chenxiaoran666/p/MillerRabin.html