day3 线性回归

我通过三个实例代码的学习了解到了线性回归的大致概念

一、实例一

import numpy as np
import tensorflow.compat.v1 as tf
import matplotlib.pyplot as plt
tf.disable_v2_behavior()
# 随机生成1000个点,围绕在y=0.1x+0.3的直线周围
num_points = 1000
vectors_set = []
for i in range(num_points):
    x1 = np.random.normal(0.0, 0.55)
    y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)
    vectors_set.append([x1, y1])

# 生成一些样本
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set]

plt.scatter(x_data,y_data,c='r')
plt.show()

# 生成1维的W矩阵,取值是[-1,1]之间的随机数类似于[1,0.5,-0.5,0.6,0.7,0.8,0.2,0.4]
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W')
# 生成1维的b矩阵,初始值是0
b = tf.Variable(tf.zeros([1]), name='b')
# 经过计算得出预估值y(矩阵运算)
y = W * x_data + b

# 以预估值y和实际值y_data之间的均方误差作为损失
loss = tf.reduce_mean(tf.square(y - y_data), name='loss')
# 采用梯度下降法来优化参数
optimizer = tf.train.GradientDescentOptimizer(0.5)
# 训练的过程就是最小化这个误差值
train = optimizer.minimize(loss, name='train')

sess = tf.Session()

init = tf.global_variables_initializer()
sess.run(init)

# 初始化的W和b是多少
print ("W =", sess.run(W), "b=", sess.run(b), "loss =", sess.run(loss))
# 执行20次训练
for step in range(30):
    sess.run(train)
    # 输出训练好的W和b
    print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss))
writer = tf.summary.FileWriter("./tmp", sess.graph)

plt.scatter(x_data,y_data,c='r')
plt.plot(x_data,sess.run(W)*x_data+sess.run(b))
plt.show()

我这段实例代码的大致理解是:

1、创建训练数据集:随机生成一些围绕在y=0.1x+0.3

2、设置模型的初始权重:因为我们知道模型是线性的也就是y=wx+b,所以去初始化w、b

3、构造线性回归模型(这个代码中也就是计算预估值y):因为我们知道模型是线性的也就是y=wx+b,前面也初始化w、b了,那就能根据输入的x_data得到该模型求出预估值y

4、求损失函数,即均方差

5、使用梯度下降法得到损失的最小值,即最优解

6、开始训练模型、得出模型的代价函数、可视化

 二、实例二

import tensorflow.compat.v1 as tf
import numpy as np
import matplotlib.pyplot as plt
import os
tf.disable_v2_behavior()
os.environ["CUDA_VISIBLE_DEVICES"]="0"
learning_rate=0.01
training_epochs=1000
display_step=50
#生成样本
train_X=np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y=np.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples=train_X.shape[0]
X=tf.placeholder("float")
Y=tf.placeholder("float")
# 生成1维的W矩阵,取值是[-1,1]之间的随机数类似于[1,4,5,6,7,8,2,4]
W=tf.Variable(np.random.randn(),name="weight")
b=tf.Variable(np.random.randn(),name='bias')
#tf.multiply将两个矩阵中对应元素各自相乘,tf.add将两个矩阵中对应元素各自相加
pred=tf.add(tf.multiply(X,W),b)
#求损失函数
cost=tf.reduce_sum(tf.pow(pred-Y,2))/(2*n_samples)
#梯度下降优化
optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
init =tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    for epoch in range(training_epochs):
        for (x,y) in zip(train_X,train_Y):
            sess.run(optimizer,feed_dict={X:x,Y:y})
        if (epoch+1) % display_step==0:
            c=sess.run(cost,feed_dict={X:train_X,Y:train_Y})
            print("Epoch:" ,'%04d' %(epoch+1),"cost=","{:.9f}".format(c),"W=",sess.run(W),"b=",sess.run(b))
    print("Optimization Finished!")
    plt.plot(train_X,train_Y,'ro',label='Original data')
    plt.plot(train_X,sess.run(W)*train_X+sess.run(b),label="Fitting line")
    plt.legend()
    plt.show()

实例二和实例一的大致思路是一样的,只是创建训练数据集、建立模型、开始训练模型的方法不一样

三、实例三

import numpy as np
import pandas as pd
import tensorflow.compat.v1 as tf
import matplotlib.pyplot as plt
tf.disable_v2_behavior()
# 随机生成1000个点,围绕在y=0.1x+0.3的直线周围
num_points = 1000
vectors_set = []
for i in range(num_points):
    x1 = np.random.normal(0.0, 0.55)
    y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)
    vectors_set.append([x1, y1])

# 生成一些样本
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set]

plt.scatter(x_data,y_data,c='r')
plt.show()
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(1, input_shape=(1,)))
model.summary()

model.compile(optimizer='adam',
              loss='mse'
)
history=model.fit(x_data,y_data,epochs=500)

model.predict(pd.Series([20,10,50]))

原文地址:https://www.cnblogs.com/chenaiiu/p/14253435.html