类欧几里得小记

前言

每次看了很快就忘了,干脆写一篇博客,来加深记忆。

定义

[f(a,b,c,n)=sum_{i=0}^{n}lfloordfrac{ai+b}{c} floor ]

[g(a,b,c,n)=sum_{i=0}^{n}ilfloordfrac{ai+b}{c} floor ]

[g(a,b,c,n)=sum_{i=0}^{n}{lfloordfrac{ai+b}{c} floor}^2 ]

[m=lfloordfrac{an+b}{c} floor ]

一、f(a,b,c,n)

当a>=c时,(=f(a\%c,b,c,n)+lfloordfrac{a}{c} floor*n(n+1)/2)
当b>=c时,(=f(a,b\%c,c,n)+lfloordfrac{b}{c} floor*(n+1))
然后

[=sum_{i=0}^{n}lfloordfrac{ai+b}{c} floor ]

我们将(dfrac{ai+b}{c})当作一条以i为自变量的直线,
这里写图片描述
于是原式就等于这个直角梯形内的整点个数,

[=sum_{i=0}^{n}sum_{j=1}^{m}[lfloordfrac{ai+b}{c} floor>=j] ]

[=sum_{i=0}^{n}sum_{j=0}^{m-1}[lfloordfrac{ai+b}{c} floor>=j+1] ]

[=sum_{i=0}^{n}sum_{j=0}^{m-1}[ai+b>=jc+c] ]

[=sum_{i=0}^{n}sum_{j=0}^{m-1}[ai+b>jc+c-1] ]

[=sum_{i=0}^{n}sum_{j=0}^{m-1}[ai>jc+c-b-1] ]

[=sum_{i=0}^{n}sum_{j=0}^{m-1}[i>lfloordfrac{jc+c-b-1}{a} floor] ]

[=sum_{j=0}^{m-1}sum_{i=0}^{n}[i>lfloordfrac{jc+c-b-1}{a} floor] ]

[=sum_{j=0}^{m-1}(n-sum_{i=0}^{n}[i<=lfloordfrac{jc+c-b-1}{a} floor]) ]

[=nm-f(c,c-b-1,a,m-1) ]

时间复杂度类似与扩展欧几里得。

二、g(a,b,c,n)

//坑

原文地址:https://www.cnblogs.com/chen1352/p/9099486.html