Pandas 数值计算和统计基础

1.(1)

# 基本参数:axis、skipna

import numpy as np
import pandas as pd

df = pd.DataFrame({'key1':[4,5,3,np.nan,2],
                 'key2':[1,2,np.nan,4,5],
                 'key3':[1,2,3,'j','k']},
                 index = ['a','b','c','d','e'])
print(df)
print(df['key1'].dtype,df['key2'].dtype,df['key3'].dtype)
print('-----')

m1 = df.mean()
print(m1,type(m1))
print('单独统计一列:',df['key2'].mean())
print('-----')
# np.nan :空值
# .mean()计算均值
# 只统计数字列,字符串的列不会进行统计了
# 可以通过索引单独统计一列

m2 = df.mean(axis=1)
print(m2)
print('-----')
# axis参数:默认为0,以列来计算,axis=1,以行来计算,这里就按照行来汇总了

m3 = df.mean(skipna=False)
print(m3)
print('-----')
# skipna参数:是否忽略NaN,默认True,如False,有NaN的列统计结果仍未NaN

输出结果:

  key1  key2 key3
a   4.0   1.0    1
b   5.0   2.0    2
c   3.0   NaN    3
d   NaN   4.0    j
e   2.0   5.0    k
float64 float64 object
-----
key1    3.5
key2    3.0
dtype: float64 <class 'pandas.core.series.Series'>
单独统计一列: 3.0
-----
a    2.5
b    3.5
c    3.0
d    4.0
e    3.5
dtype: float64
-----
key1   NaN
key2   NaN
dtype: float64
-----

(2)

import numpy
ar = numpy.random.rand(1000)
ar.mean()   #数组同样计算 引用

输出结果:
0.50208686016230231

(3)

import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randn(10,2),columns = ['A','B'])
df['means'] = df.mean(axis = 1)   # 新增加一列,列名为’mean',axis= 1表示按行计算均值 ,并把计算的均值添加到列means中
print(df)
df.loc['mean'] = df.mean(axis = 0)  # 新增加一行,行名为’mean',axis= 0表示按列计算均值 ,并把计算的均值添加到行mean中 
df

输出结果:

          A         B     means
0  0.477583 -0.848570 -0.185493
1  0.756248  1.268240  1.012244
2  1.385510 -0.376960  0.504275
3 -0.858495  0.814814 -0.021841
4 -0.555510  0.432579 -0.061465
5  0.769137  0.245349  0.507243
6  1.703793  0.587001  1.145397
7 -1.035849 -0.953496 -0.994673
8 -0.065659 -0.600356 -0.333008
9  2.138832  0.053595  1.096213

2.

# 主要数学计算方法,可用于Series和DataFrame(1)

df = pd.DataFrame({'key1':np.arange(10),
                  'key2':np.random.rand(10)*10})
print(df)
print('-----')

print(df.count(),'→ count统计非Na值的数量
')
print(df.min(),'→ min统计最小值
',df['key2'].max(),'→ max统计最大值
')
print(df.quantile(q=0.75),'→ quantile统计分位数,参数q确定位置
')
print(df.sum(),'→ sum求和
')
print(df.mean(),'→ mean求平均值
')
print(df.median(),'→ median求算数中位数,50%分位数
')
print(df.std(),'
',df.var(),'→ std,var分别求标准差,方差
')
print(df.skew(),'→ skew样本的偏度
')
print(df.kurt(),'→ kurt样本的峰度
')

输出结果:

 key1      key2
0     0  6.792638
1     1  1.049023
2     2  5.441224
3     3  4.667631
4     4  2.053692
5     5  9.813006
6     6  5.074884
7     7  1.526651
8     8  8.519215
9     9  3.543486
-----
key1    10
key2    10
dtype: int64 → count统计非Na值的数量

key1    0.000000
key2    1.049023
dtype: float64 → min统计最小值
 9.81300585173231 → max统计最大值

key1    6.750000
key2    6.454785
Name: 0.75, dtype: float64 → quantile统计分位数,参数q确定位置

key1    45.00000
key2    48.48145
dtype: float64 → sum求和

key1    4.500000
key2    4.848145
dtype: float64 → mean求平均值

key1    4.500000
key2    4.871257
dtype: float64 → median求算数中位数,50%分位数

key1    3.027650
key2    2.931062
dtype: float64 
 key1    9.166667
key2    8.591127
dtype: float64 → std,var分别求标准差,方差

key1    0.000000
key2    0.352466
dtype: float64 → skew样本的偏度

key1   -1.20000
key2   -0.79798
dtype: float64 → kurt样本的峰度

3.

# 主要数学计算方法,可用于Series和DataFrame(2)

df['key1_s'] = df['key1'].cumsum()
df['key2_s'] = df['key2'].cumsum()
print(df,'→ cumsum样本的累计和
')

df['key1_p'] = df['key1'].cumprod()
df['key2_p'] = df['key2'].cumprod()
print(df,'→ cumprod样本的累计积
')

print(df.cummax(),'
',df.cummin(),'→ cummax,cummin分别求累计最大值,累计最小值
')
# 会填充key1,和key2的值

输出结果:

 key1      key2  key1_s     key2_s
0     0  6.792638       0   6.792638
1     1  1.049023       1   7.841661
2     2  5.441224       3  13.282885
3     3  4.667631       6  17.950515
4     4  2.053692      10  20.004208
5     5  9.813006      15  29.817213
6     6  5.074884      21  34.892097
7     7  1.526651      28  36.418749
8     8  8.519215      36  44.937963
9     9  3.543486      45  48.481450 → cumsum样本的累计和

   key1      key2  key1_s     key2_s  key1_p         key2_p
0     0  6.792638       0   6.792638       0       6.792638
1     1  1.049023       1   7.841661       0       7.125633
2     2  5.441224       3  13.282885       0      38.772160
3     3  4.667631       6  17.950515       0     180.974131
4     4  2.053692      10  20.004208       0     371.665151
5     5  9.813006      15  29.817213       0    3647.152301
6     6  5.074884      21  34.892097       0   18508.874743
7     7  1.526651      28  36.418749       0   28256.595196
8     8  8.519215      36  44.937963       0  240724.006055
9     9  3.543486      45  48.481450       0  853002.188425 → cumprod样本的累计积

   key1      key2  key1_s     key2_s  key1_p         key2_p
0   0.0  6.792638     0.0   6.792638     0.0       6.792638
1   1.0  6.792638     1.0   7.841661     0.0       7.125633
2   2.0  6.792638     3.0  13.282885     0.0      38.772160
3   3.0  6.792638     6.0  17.950515     0.0     180.974131
4   4.0  6.792638    10.0  20.004208     0.0     371.665151
5   5.0  9.813006    15.0  29.817213     0.0    3647.152301
6   6.0  9.813006    21.0  34.892097     0.0   18508.874743
7   7.0  9.813006    28.0  36.418749     0.0   28256.595196
8   8.0  9.813006    36.0  44.937963     0.0  240724.006055
9   9.0  9.813006    45.0  48.481450     0.0  853002.188425 
    key1      key2  key1_s    key2_s  key1_p    key2_p
0   0.0  6.792638     0.0  6.792638     0.0  6.792638
1   0.0  1.049023     0.0  6.792638     0.0  6.792638
2   0.0  1.049023     0.0  6.792638     0.0  6.792638
3   0.0  1.049023     0.0  6.792638     0.0  6.792638
4   0.0  1.049023     0.0  6.792638     0.0  6.792638
5   0.0  1.049023     0.0  6.792638     0.0  6.792638
6   0.0  1.049023     0.0  6.792638     0.0  6.792638
7   0.0  1.049023     0.0  6.792638     0.0  6.792638
8   0.0  1.049023     0.0  6.792638     0.0  6.792638
9   0.0  1.049023     0.0  6.792638     0.0  6.792638 → cummax,cummin分别求累计最大值,累计最小值

4.

# 唯一值:.unique()

s = pd.Series(list('asdvasdcfgg'))
sq = s.unique()
print(s)
print(sq,type(sq))
print(pd.Series(sq))
# 得到一个唯一值数组
# 通过pd.Series重新变成新的Series

sq.sort()
print(sq)
# 重新排序

输出结果:

0     a
1     s
2     d
3     v
4     a
5     s
6     d
7     c
8     f
9     g
10    g
dtype: object
['a' 's' 'd' 'v' 'c' 'f' 'g'] <class 'numpy.ndarray'>
0    a
1    s
2    d
3    v
4    c
5    f
6    g
dtype: object
['a' 'c' 'd' 'f' 'g' 's' 'v']

5.

# 值计数:.value_counts()

sc = s.value_counts(sort = False)  # 也可以这样写:pd.value_counts(sc, sort = False)
print(sc)
# 得到一个新的Series,计算出不同值出现的频率
# sort参数:排序,默认为True

输出结果:

d    2
a    2
s    2
c    1
f    1
g    2
v    1
dtype: int64

6.

# 成员资格:.isin()

s = pd.Series(np.arange(10,15))
df = pd.DataFrame({'key1':list('asdcbvasd'),
                  'key2':np.arange(4,13)})
print(s)
print(df)
print('-----')

print(s.isin([5,14]))   #判断5和14是否在里面
print(df.isin(['a','bc','10',8]))
# 用[]表示
# 得到一个布尔值的Series或者Dataframe

输出结果:

0    10
1    11
2    12
3    13
4    14
dtype: int32
  key1  key2
0    a     4
1    s     5
2    d     6
3    c     7
4    b     8
5    v     9
6    a    10
7    s    11
8    d    12
-----
0    False
1    False
2    False
3    False
4     True
dtype: bool
    key1   key2
0   True  False
1  False  False
2  False  False
3  False  False
4  False   True
5  False  False
6   True  False
7  False  False
8  False  False

课后题:

写出一个输入元素直接生成数组的代码块,然后创建一个函数,该函数功能用于判断一个Series是否是唯一值数组,返回“是”和“不是”。

import numpy as np
import pandas as pd
#练习1
ar = eval(input("请输入一组元素,以列表的形式:"))
s =pd.Series(ar)
print(s)

def f(s):
    s1 =s.unique()
    if len(s1) == len(s):
        print("该数据是唯一值Series")
    else:
        print("该数据不是唯一值Series")

f(s)
原文地址:https://www.cnblogs.com/carlber/p/9919304.html