Volley源码学习笔记

标签(空格分隔): Volley


创建RequestQueue

使用Volley的时候,我们首先需要创建一个RequestQueue对象,用于添加各种请求,创建的方法是Volley.newRequestQueue(Context context)

public static RequestQueue newRequestQueue(Context context) {
    return newRequestQueue(context, null);
}

public static RequestQueue newRequestQueue(Context context, HttpStack stack) {
    File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);

    String userAgent = "volley/0";
    try {
        String packageName = context.getPackageName();
        PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);
        userAgent = packageName + "/" + info.versionCode;
    } catch (NameNotFoundException e) {
    }

    if (stack == null) {
        if (Build.VERSION.SDK_INT >= 9) {
            stack = new HurlStack();
        } else {
            // Prior to Gingerbread, HttpUrlConnection was unreliable.
            // See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html
            stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
        }
    }

    Network network = new BasicNetwork(stack);

    RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
    queue.start();

    return queue;
}

可以看到,Volley.newRequestQueue()最终会调用其两个参数的重载方法,如果版本是2.3以下则会创建HttpClientStack,2.3以上则会创建HurlStack,前者使用HttpClient,而后者使用HttpUrlConnection进行通信。紧接着,创建DiskBaseCache对象,作为参数传入新建的RequestQueue对象中,DiskBaseCache使用SD卡进行缓存。最后调用queue.start()启动。
补充:当然我们可以自行创建RequestQueue,这样就可以修改缓存目录、线程池大小等等。。

我们先看一下queue的成员变量,方便我们理解后续的操作:

//重复的请求将加入这个集合
private final Map<String, Queue<Request>> mWaitingRequests =
        new HashMap<String, Queue<Request>>();
//所有正在处理的请求任务的集合       
private final Set<Request> mCurrentRequests = new HashSet<Request>();
//缓存任务的队列
private final PriorityBlockingQueue<Request> mCacheQueue =
    new PriorityBlockingQueue<Request>();
//网络请求队列
private final PriorityBlockingQueue<Request> mNetworkQueue =
    new PriorityBlockingQueue<Request>();
//默认线程池大小
private static final int DEFAULT_NETWORK_THREAD_POOL_SIZE = 4;
//用于响应数据的存储与获取
private final Cache mCache;
//用于网络请求
private final Network mNetwork;
//用于分发响应数据
private final ResponseDelivery mDelivery;
//网络请求调度
private NetworkDispatcher[] mDispatchers;
//缓存调度
private CacheDispatcher mCacheDispatcher;

public RequestQueue(Cache cache, Network network) {
    this(cache, network, DEFAULT_NETWORK_THREAD_POOL_SIZE);
}
public RequestQueue(Cache cache, Network network, int threadPoolSize) {
    //可以看到,新建一个绑定主线程Looper的Handler对象,用于将响应结果传送回主线程中
    this(cache, network, threadPoolSize,
            new ExecutorDelivery(new Handler(Looper.getMainLooper())));
}
public RequestQueue(Cache cache, Network network, int threadPoolSize,
        ResponseDelivery delivery) {
    mCache = cache;
    mNetwork = network;
    mDispatchers = new NetworkDispatcher[threadPoolSize];
    mDelivery = delivery;
}
接下来看一下queue.start()方法:
public void start() {
    stop();  // Make sure any currently running dispatchers are stopped.
    // Create the cache dispatcher and start it.
    mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
    mCacheDispatcher.start();

    // Create network dispatchers (and corresponding threads) up to the pool size.
    for (int i = 0; i < mDispatchers.length; i++) {
        NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
                mCache, mDelivery);
        mDispatchers[i] = networkDispatcher;
        networkDispatcher.start();
    }
}

这里就是将缓存调度器跟4个网络调度器启动,它们会分别不断从相应的队列中获取请求,若队列为空,则会阻塞

有了RequestQueue之后,我们就可以调用其add方法将请求加入到队列中去,这样Volley就会帮我们响应请求,那么我们现在看一下add方法源码:
public Request add(Request request) {
    // Tag the request as belonging to this queue and add it to the set of current requests.
    request.setRequestQueue(this);
    synchronized (mCurrentRequests) {
        mCurrentRequests.add(request);
    }

    // Process requests in the order they are added.
    request.setSequence(getSequenceNumber());
    request.addMarker("add-to-queue");

    // If the request is uncacheable, skip the cache queue and go straight to the network.
    if (!request.shouldCache()) {
        //设置为不需要缓存,则请求直接采用网络请求方式
        mNetworkQueue.add(request);
        return request;
    }

    // Insert request into stage if there's already a request with the same cache key in flight.
    synchronized (mWaitingRequests) {
        String cacheKey = request.getCacheKey();
        //如果mWaitingRequests存在该key,说明有同样的请求进来过,Volley使用队列存储,所以先获取该队列
        if (mWaitingRequests.containsKey(cacheKey)) {
            // There is already a request in flight. Queue up.
            Queue<Request> stagedRequests = mWaitingRequests.get(cacheKey);
            //如果队列为空,说明先前的请求为同类型中的第一个,被加入到缓存队列中去
            if (stagedRequests == null) {
                stagedRequests = new LinkedList<Request>();
            }
            stagedRequests.add(request);
            //更新队列
            mWaitingRequests.put(cacheKey, stagedRequests);
            if (VolleyLog.DEBUG) {
                VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);
            }
        } else {
            // Insert 'null' queue for this cacheKey, indicating there is now a request in
            // flight.
            //当前请求为同类型中请求的第一个,所以直接加入缓存队列中,此时,同类型队列为null,将其加入到mWaitingRequest中
            mWaitingRequests.put(cacheKey, null);
            mCacheQueue.add(request);
        }
        return request;
    }
}

首先将request对象放入mCurrentRequests中,接着判断request是否需要缓存,如果不需要则直接加入到网络请求队列。否则,查看mWaitingRequests中是否存在该请求的缓存key,如果存在,说明有同样的请求进来过,由于Volley使用队列来存储,所以我们通过request的缓存key从mWaitingRequests中获取同类型的队列,如果获取到的队列为null,说明先前的request为同类型中的第一个且已经被加入到mCacheQueue中,否则,直接将request加入到队列中去。
注意:通过RequestQueue#add方法添加同类型中的request只有一个进入到mCacheQueue中,其他都会暂存在队列中,等待第一个进入mCacheQueue的request请求结束

再来看看queue中的finish()方法:

void finish(Request<?> request) {
        // Remove from the set of requests currently being processed.
        synchronized (mCurrentRequests) {
            mCurrentRequests.remove(request);
        }

        if (request.shouldCache()) {
            synchronized (mWaitingRequests) {
                String cacheKey = request.getCacheKey();
                Queue<Request<?>> waitingRequests = mWaitingRequests.remove(cacheKey);
                if (waitingRequests != null) {
                    if (VolleyLog.DEBUG) {
                        VolleyLog.v("Releasing %d waiting requests for cacheKey=%s.",
                                waitingRequests.size(), cacheKey);
                    }
                    // Process all queued up requests. They won't be considered as in flight, but
                    // that's not a problem as the cache has been primed by 'request'.
                    mCacheQueue.addAll(waitingRequests);
                }
            }
        }
    }

可以看到,先将request从mCurrentRequests中去掉,然后下面的代码是request需要缓存的时候才会进入;下面分析一下if语句内的代码作用:
前面写到,但我们的request是不需要缓存的时候是直接进入网络请求队列中,而当我们的request需要缓存,那么就会获取request的缓存key,相同缓存key的request只有一个会进入mCacheQueue中,其他都会暂存在队列中,并且将这个队列放入到mWaitingRequests中去。所以当我们queue中finish()方法被调用时,说明进入mCacheQueue中的那一个reqest已经响应结束,那么我们存储在队列中的同类型requests自然就开始响应了,也就是从mWaitingRequests中取出队列,然后将队列中的request全部加入到缓存队列中


前面的RequestQueue#start方法中启动了一个缓存调度器跟四个网络调度器,其实是Thread的子类,用于在后台处理请求,分别负责从缓存跟网络中获取数据

CacheDispatcher

缓存调度器,负责后台处理请求,从缓存中获取数据。既然是Thread的子类,那么我们看一下当中的run方法。
public void run() {
    if (DEBUG) VolleyLog.v("start new dispatcher");
    Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);

    // Make a blocking call to initialize the cache.
    mCache.initialize();

    while (true) {
        try {
            // Get a request from the cache triage queue, blocking until
            // at least one is available. 取出缓存队列的任务(可能会阻塞)
            final Request request = mCacheQueue.take();
            request.addMarker("cache-queue-take");

            // If the request has been canceled, don't bother dispatching it.
            if (request.isCanceled()) {
                request.finish("cache-discard-canceled");
                continue;
            }

            // Attempt to retrieve this item from cache.
            Cache.Entry entry = mCache.get(request.getCacheKey());
            if (entry == null) {
                request.addMarker("cache-miss");
                // Cache miss; send off to the network dispatcher.
                mNetworkQueue.put(request);
                continue;
            }

            // If it is completely expired, just send it to the network.
            if (entry.isExpired()) {
                request.addMarker("cache-hit-expired");
                request.setCacheEntry(entry);
                mNetworkQueue.put(request);
                continue;
            }

            // We have a cache hit; parse its data for delivery back to the request.
            request.addMarker("cache-hit");
            Response<?> response = request.parseNetworkResponse(
                    new NetworkResponse(entry.data, entry.responseHeaders));
            request.addMarker("cache-hit-parsed");

            if (!entry.refreshNeeded()) {
                // Completely unexpired cache hit. Just deliver the response.
                mDelivery.postResponse(request, response);
            } else {
                // Soft-expired cache hit. We can deliver the cached response,
                // but we need to also send the request to the network for
                // refreshing.
                request.addMarker("cache-hit-refresh-needed");
                request.setCacheEntry(entry);

                // Mark the response as intermediate.
                response.intermediate = true;

                // Post the intermediate response back to the user and have
                // the delivery then forward the request along to the network.
                mDelivery.postResponse(request, response, new Runnable() {
                    @Override
                    public void run() {
                        try {
                            mNetworkQueue.put(request);
                        } catch (InterruptedException e) {
                            // Not much we can do about this.
                        }
                    }
                });
            }

        } catch (InterruptedException e) {
            // We may have been interrupted because it was time to quit.
            if (mQuit) {
                return;
            }
            continue;
        }
    }
}

NetWorkDispatcher

跟`CacheDispatcher`一样,它也是`Thread`的子类,负责从网络请求队列中获取request。下面分析它的run方法:
public void run() {
    Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
    Request request;
    while (true) {
        try {
            // Take a request from the queue.
            request = mQueue.take();
        } catch (InterruptedException e) {
            // We may have been interrupted because it was time to quit.
            if (mQuit) {
                return;
            }
            continue;
        }

        try {
            request.addMarker("network-queue-take");

            // If the request was cancelled already, do not perform the
            // network request.
            if (request.isCanceled()) {
                request.finish("network-discard-cancelled");
                continue;
            }

            // Tag the request (if API >= 14)
            if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH) {
                TrafficStats.setThreadStatsTag(request.getTrafficStatsTag());
            }

            // Perform the network request. 发送网络请求
            NetworkResponse networkResponse = mNetwork.performRequest(request);
            request.addMarker("network-http-complete");

            // If the server returned 304 AND we delivered a response already,
            // we're done -- don't deliver a second identical response.
            //表示这个请求仅仅是要求更新新鲜度,并且返回的是304,即可结束本请求
            if (networkResponse.notModified && request.hasHadResponseDelivered()) {
                request.finish("not-modified");
                continue;
            }

            // Parse the response here on the worker thread.
            Response<?> response = request.parseNetworkResponse(networkResponse);
            request.addMarker("network-parse-complete");

            // Write to cache if applicable.
            // TODO: Only update cache metadata instead of entire record for 304s.
            if (request.shouldCache() && response.cacheEntry != null) {
                mCache.put(request.getCacheKey(), response.cacheEntry);
                request.addMarker("network-cache-written");
            }

            // Post the response back.
            request.markDelivered();
            mDelivery.postResponse(request, response);
        } catch (VolleyError volleyError) {
            parseAndDeliverNetworkError(request, volleyError);
        } catch (Exception e) {
            VolleyLog.e(e, "Unhandled exception %s", e.toString());
            mDelivery.postError(request, new VolleyError(e));
        }
    }
}

流程很清晰,同样是循环从队列中取出请求。如果是要求更新新鲜度并且是返回304(表示新鲜的),则继续循环。否则解析为Response对象,需要缓存的话就写到mCache对象中去;最后交由mDelivery传输响应结果

Delivery

Volley中,缓存调度器或者网络调度器在完成请求时,都是由Delivery来负责传输响应结果,这里传输结果是由子线程传到主线程当中,其中使用到的就是我们常用的Handler机制。来看看具体的实现:

public interface ResponseDelivery {
    /**
     * Parses a response from the network or cache and delivers it.
     */
    public void postResponse(Request<?> request, Response<?> response);

    /**
     * Parses a response from the network or cache and delivers it. The provided
     * Runnable will be executed after delivery.
     */
    public void postResponse(Request<?> request, Response<?> response, Runnable runnable);

    /**
     * Posts an error for the given request.
     */
    public void postError(Request<?> request, VolleyError error);
}

这个一个接口,定义了Delivery中传输结果的方法,其实现类是ExecutorDelivery,来看一下它的源码:

 /** Used for posting responses, typically to the main thread. */
    private final Executor mResponsePoster;

    /**
     * Creates a new response delivery interface.
     * @param handler {@link Handler} to post responses on
     */
    public ExecutorDelivery(final Handler handler) {
        // Make an Executor that just wraps the handler.
        mResponsePoster = new Executor() {
            @Override
            public void execute(Runnable command) {
                handler.post(command);
            }
        };
    }
    
    
     @Override
    public void postResponse(Request<?> request, Response<?> response) {
        postResponse(request, response, null);
    }

    @Override
    public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {
        request.markDelivered();
        request.addMarker("post-response");
        mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));
    }

结合前面的RequestQueue中的构造方法:

public RequestQueue(Cache cache, Network network, int threadPoolSize) {
        this(cache, network, threadPoolSize,
                new ExecutorDelivery(new Handler(Looper.getMainLooper())));
    }

这里总结一下:ExecutorDelivery是通过postResponse()方法来传输结果,可以看到,最终会走到 mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable))这行代码,其中的mResponsePoster是一个执行器,其内部只有一个execute()方法,我们可以在ExecutorDelivery的构造方法当中看到,execute()方法内部就直接调用了handler.post(Runnable runnable),而这个handler就是RequestQueue传入的new Handler(Looper.getMainLooper()),因此就可以从子线程传输响应结果到我们的主线程中了


回调接口响应结果

紧接着上面的分析,在ExecutorDeliverypostResponse方法中mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));新建一个ResponseDeliveryRunnable对象来响应,那我们看一下ResponseDeliveryRunnable:

private class ResponseDeliveryRunnable implements Runnable {
        private final Request mRequest;
        private final Response mResponse;
        private final Runnable mRunnable;

        public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) {
            mRequest = request;
            mResponse = response;
            mRunnable = runnable;
        }

        @SuppressWarnings("unchecked")
        @Override
        public void run() {
            // If this request has canceled, finish it and don't deliver.
            if (mRequest.isCanceled()) {
                mRequest.finish("canceled-at-delivery");
                return;
            }

            // Deliver a normal response or error, depending.
            if (mResponse.isSuccess()) {
                mRequest.deliverResponse(mResponse.result);
            } else {
                mRequest.deliverError(mResponse.error);
            }

            // If this is an intermediate response, add a marker, otherwise we're done
            // and the request can be finished.
            if (mResponse.intermediate) {
                mRequest.addMarker("intermediate-response");
            } else {
                mRequest.finish("done");
            }

            // If we have been provided a post-delivery runnable, run it.
            if (mRunnable != null) {
                mRunnable.run();
            }
       }
    }

在这里,判断Response是否成功,然后分别调用mRequest的deliverResponse()跟deliverError()方法,这里面就会回调Request对象的响应接口,也就是新建Request传入的成功或者失败接口。

原文地址:https://www.cnblogs.com/caoweizhao/p/7450020.html